• Title/Summary/Keyword: stream confluence

Search Result 52, Processing Time 0.042 seconds

Depositional Landforms in Jiwoo Drainage Basin (지우천 유역의 퇴적지형 연구)

  • Oh, In-Sun
    • Journal of the Korean association of regional geographers
    • /
    • v.15 no.2
    • /
    • pp.192-203
    • /
    • 2009
  • The purpose of this paper is to elucidate the formative processes of depositional landforms in Jiwoo drainage basin which located in the most upstream reach of Namgang River. Through the analysis of morphologic characteristics and sedimentary facies, the formative processes can be summarized as follow: First, the high depositional landforms(Sapyeong, Eungam, Naedongdyttle site) were formed by gelifluction process in the periglacial environment during the last glacial period. And the relative height over river bed of them is getting lower from upper to downstream. The extent of the high depositional landforms is assumed about 1 kilometer downstream far from the confluence of Jiwoo stream and Namgang River. Second, the sediments in the gentle slope at Jangseungbuldle were carried by gelifluction process during the last glacial stage after the deep-weathered bedrock had formed a gentle slope. Third, the high depositional landforms were dissected during warm and humid environment of postglacial stage, and some sediments of them were left in the river bed. Later, as the more upstream high depositional landforms were dissected completely, stream power was getting more than resistance(sediment storage) and the low depositional landforms(Sapyeong, Yongchusa, Deungbangdle site) were formed.

  • PDF

Sensitivity Analysis of RMA2 Model Parameter Variation with Hydraulic Characteristics of Stream Junction Area (하도 합류부의 수리학적 특성을 고려한 RMA2 모형 매개변수의 민감도 분석)

  • Ahn, Seung-Seop;Yim, Dong-Hee;Seo, Myung-Joon;Lee, Hyo-Jung
    • Journal of Environmental Science International
    • /
    • v.17 no.7
    • /
    • pp.783-793
    • /
    • 2008
  • The purpose of this study is to analyze the sensitivity of the RMA2 model parameters reflecting the flow characteristics of stream junction and thus understand the hydraulic characteristics of the channel confluence flow. This study dealt with the input parameters of the RMA-2 model, a two-dimensional numerical analysis model widely used for researches both at home and abroad. The parameters of the RMA-2 model are roughness coefficient, turbulent diffusion coefficient, Coriolis forces latitude, Density, and mesh size. This study those parameters estimated from actual heavy rainfall, and varied the parameter size by (-)30%${\sim}$+30% to review the characteristics of the flow characteristics of the channel section. Weobserved that when the ratio of the channel width was relatively small, the smaller the approaching angle was, the farther from the junctions became the generating place of the maximum flow velocity, however, when the ratio of the channel width was relatively large, the larger the approaching angle was, the farther the generating place of the maximum flow velocity from the junctions became. In particular, the distance between junctions and the place where the maximum flow velocity generated showed an absolute correlationover 90% of the relative channel width, but an inverse relationwas found when the distance to the place where the flow velocity generated was shortened as relative the channel width between the main channel and tributary increased.

Flume Experiments on Channel Morphology at a Tributary Junction (하천 합류점의 하도형상에 관한 수로실험)

  • Taeho Kim
    • Journal of the Korean Geographical Society
    • /
    • v.33 no.3
    • /
    • pp.355-364
    • /
    • 1998
  • Flume experiments are conducted to describe the channel morphology at a tributary junction and to examine the influence of channel arrangements and hydrologic conditions on the channel morphology. When flow momenta of two tributaries are equal, a receiving stream tends to align with an axis bisecting junction angle. It causes lateral migration of a receiving stream according to an initial channel arrangement. As a result, the post-fonfluent channel morphology varies with plan geometry of a confluence such as symmetry, transition and asymmetry. Bed scour is the most notable morphology within a junction site. Its shape is characterized by steep walls which are primarily influenced by junction angle. Key control of scour dimension is also junction angle. Although the principle of accordant junction has been undoubtedly accepted, discordance is commonly developed at model and natural stream confluences. Unit discharge ratio of confluent streams is the most crucial factor because both discharge and sediment concentration ratios have an effect on discordance at a junction.

  • PDF

A Study on the Fish Fauna of the Samcheon and Jeonjucheon Stream in Urban Area at Jeonju, Korea (전주 도심구간 삼천과 전주천의 어류상)

  • MinYeong Im;Yu-Shin Sin;Cheol-Woo Park;Jong-Wook Kim;Youn Choi;Eun-Bi Kim;Jae-Goo Kim
    • Korean Journal of Ecology and Environment
    • /
    • v.57 no.1
    • /
    • pp.17-27
    • /
    • 2024
  • This study investigated the fish fauna of Jeonjucheon and Samcheon Streams, flowing through the city of Jeonju, through surveys conducted at 10 sampling sites using kick net and cast net. The fish fauna collected included 10 families and 36 species, with a total of 2,064 individuals. Samcheon had 8 families and 30 species with 1,074 individuals, Jeonjucheon had 8 families and 26 species with 986 individuals. The dominant species was Zacco platypus with 1,202 individuals, and a total of 153 individuals of the subdominant were Pseudogobio esocinus. In Jeonjucheon Stream, a total of 567 individuals of the dominant species were collected as Z. platypus and 99 individuals of the subdominant species were collected as Pungtungia herzi, and there was no significant change in the stream environment except for the confluence site. Further expanded research covering the entire Jeonjucheon and Samcheon Streams region, accompanied by regular monitoring, is essential to record and understand fluctuations in fish fauna.

Analysis of Inundation Characteristics for EAP of Highway in Urban Stream - Dongbu Highway in Jungrang Stream - (도시하천도로의 EAP수립을 위한 침수특성분석 - 중랑천 동부간선도로를 중심으로 -)

  • Lee, Jong-Ta;Jeon, Won-Jun;Hur, Sung-Chul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.69-76
    • /
    • 2006
  • An hydraulic and hydrologic analysis procedure was proposed to reduce the inundation damage of highway in urban stream, that could contribute the EAP and Traffic control planning of Dongbu highway in the Jungrang stream basin which is one of the representative urban area in Korea. We performed the HEC-HMS runoff analysis, and the UNET unsteady flow modeling to decide the inundation reaches and their characteristics. The high inundation risk areas were of Emoon railway bridge and the Wollueng bridge, which are inundated in the case of 10 year and 20 year frequency flood respectively. We also analyze the inundation characteristics under the various conditions of the accumulation rainfall and the duration. Flood elevation at the Wolgye-1 bridge exceed over Risk Flood Water Level(EL.17.84 m) when the accumulation rainfall is over 250 mm and shorter duration than 7 hr. When neglecting backwater effect from the Han river, inundation risk are highly at the reach C2(Wolgye-1 br. ${\sim}$Jungrang br., left bank), C1(Wolgye-1 br. ${\sim}$Jungrang br., right bank), D(Jungrang br. ${\sim}$Gunja br.) in order, but when consider the effect, the inundation risk are higher than the others at the reach D2(Jungrang br. ${\sim}$Gunja br., left bank) and E(Gunja br. ${\sim}$Yongbi br.), which are located downstream near confluence.

A Riverbed Change Prediction by River-Crossing Structure -Focused on the Major River Reaches of the Multifunctional Administrative City- (하천 횡단구조물에 의한 하상변동 예측 - 행정중심복합도시 주요 하천구간을 중심으로 -)

  • Yeon, Kyu-Sung;Jeong, Sang-Man;Yun, Chan-Young;Lee, Joo-Heon;Shin, Kwang-Seob
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.107-113
    • /
    • 2009
  • This study has been conducted for the long-term riverbed change prediction on Geum River and Miho Stream surrounding the planned Multifunctional Administrative City and the neighboring regions by the construction of a small dam. Based on the analysis of vertical riverbed changes of the cross-sectional data for the years 1988, 2002 and 2007, minimum bed elevation significantly decreased in both Geum River and Miho Stream in 2007 as compared to 1988. Compared to 2002, however, a slight elevation change was observed. To make a long-term prediction on riverbed changes by the construction of a small dam, a one dimensional HEC-RAS 4.0 model has been used. By the fixed bed model test, the water levels were calibrated. By using the cross-sectional data of 1988 and 2002, verification was conducted under a movable bed model. According to the prediction of riverbed changes for each scenario with varying height of small dam, minor impact is expected around Miho Stream while major impact is expected around Geum River by 2017, as the small dam height increases. If the small dam is 7m-high, for example, it's been simulated that 1.59m deposition would be expected around the upper stream of Miho Stream Confluence while 1.98m scour would be expected around the downstream of the small dam.

Simulation of Pollutants Transport using 2-D Advection-Dispersion Model near Intake Station (2차원 이송-확산모형을 이용한 취수장 인근에서의 오염물질의 혼합거동 모의)

  • Kim, Jae-Dong;Kim, Young-Do;Lyu, Si-Wan;Seo, Il-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.791-794
    • /
    • 2008
  • The transport and dispersion of pollutants in natural river is a principal issue in intake station management. To study the pollutant transport in natural rivers, the effect of meandering and confluence of tributary on mixing process have to analyzed. The objective of this study is to simulate the mixing and transport of pollutants for operating water gate of Nakdong Estuary Barrage around the intake station. Mulgeum intake station being used as drinking water sources for Pusan. The flow around the intake station is influenced by operating water gate of Nakdong Estuary Barrage which is located downstream. The water gate system includes ten individual gates. The minor gate is usually opened according to elevation of the sea. When the river flow increases, the main water gate is opened. Daepo stream, tributary of the Nakdong river, is on opposite side of the intake station. The pollutants from Daepo stream often flows into the intake station acoording to the flow pattern. In this study, based on this simulation results, proper water gate operation which can minimize negative impact will be provided.

  • PDF

Study on the Inundation at the Merging Area of Osipcheon and Local Stream Using a Two-Dimensional Model (2차원 모형을 이용한 삼척오십천 소하천 합류 지점 침수해석에 관한 연구)

  • Do Jin Kim;Kye Won Jun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.61-66
    • /
    • 2023
  • In this study, we analyzed the flooded area around Samcheok Middle School caused by typhoons MAYSAK·HAISHEN in September 2020. To analyze the confluence of Samcheok Osipcheon, local stream Deungbongcheon, we utilized Iber, a two-dimensional hydraulic model. We simulated the water depth and flood extent based on the peak flows on September 3 and September 7, 2020, and the 80 year and 100 year frequency floods. The simulation results showed that the 80-year frequency flood and the 100-year frequency flood on September 7 were insignificantly different, but the maximum flow rate from September 3 to September 7 was significantly different at 401 m3/s, resulting in a difference of 0.8 m in water depth and 7.1 m2 in flood area. In addition, the analysis that considered only the contour lines using contour lines predicted inundation of not only the Samcheok Middle School playground but also the building, confirming the need to apply DSM.

The impact of anthropogenic factors on changes in discharge and quality of water in the Hadano basin, Japan (인위적인 요인이 하천의 유량과 수질변화에 미친 영향 - 일본 하다노 분지를 사례 로 -)

  • ;Yang, Hea-Kun
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.3
    • /
    • pp.242-254
    • /
    • 1995
  • The Hadano Basin is located at a distance of about 70kms and 60kms from Tokyo and Yokohama and lies in the south-west part of the Kanto region in Japan. The basin area, which correspoends to the catchment of the Kaname River, is about areal size of 60.7$\textrm{km}^2$ and extends about length of 8kms in E-W direction and about width of 5kms in N-S direction (Fig.1). The Hadano basin is filled with thick pile of the alluvum from deposits composed of volcanic materials, mostly came from the Hakone Volcano and overlain by Fuji Volcanic ashes. Fluvial deposits form the good aquifer, therefore water resources of Handano City has been largely depending upon the eroundwater. Urbanization and industrialization of the basin has been rapid in the last thirty years, after activation of "Factory Attraction Policy of Hadano City" in 1956. Growth in population and number of factory due to urbanization changed the land-use pattern of the basin rapidly and increased the water demands. Therefore, Hadano City exploited a new source of water supply, and have introduced the prefectureal waterworks since 1976. On the other hand, the rapid urbanization has brought about the pollution of streams in the basin by domestic sewage and industrial waste water. Diffusion rate of sewerage systems in Hadano City is 38% in 1993. In ordcr to examine the impact of anthropogenic factors on river environments, the author took up the change of land-use and diffusion area of sewerage as parameters, and performed field surveys on water discharge and quality. The survey has been made at upstream and downstream of the main stream regularly per month, to get informati ons about the variation of discharge and water quality aiong the stream and its diurnal fluctuation. Annual variation has been analyzed based the data from Hadano City Office. The results are summarized as follows. 1. Stream discharge has been increasing by urbanization (Fig.3). Water quality (C $l^{-10}$ , N $H^{+}$$_{ 4}$-N, BOD) has been improving gradually after the application of sewerage service, yet water pollution load at the lower station has increased than that at the upper one because of the larger anthropogenic discharge volumes (Fig.4). 2. Corrclation coefficient of discharges between upper and lower was 0.81-0.92. Pollutant loads of the R. Kamame after the confluence with R. Kuzuha grew up by 2.4-3.7 times as compared with its upper reaches, and it increased to 3.7-6.9 times after the confluence with the R. Muro (Fig.5). 3. The changes of water quality along the stream can be divided into two groups (Fig.6a). First: water quality of the R. Kaname and R. Shijuhachisse is becoming worse towards the lower reaches because the water from branches are polluted. Second: water quality are improved in the lower where spring and small branch streams supply clear water, for example R. Mizunashi, R. Muro and R. Kuzuha. 4. Measured discharge at the upper station in the R. Shijuhachisse is 0.153㎥/sec, and about 55% of this is recharged until it reaches to the lower point. The R. Mizunashi has a discharge of 1.155㎥/sec at the upper point, is recharged 0.24㎥/sec until the midstream and groundwater spring 0.2㎥/sec at the lower reaches. R. Kuzuha recharged all the mountain runoff (0.2㎥/sec) at the upper reaches. The R. Muro is supplied by many springs and the estimated discharge of spring was 0.47㎥/sec (Fig.6b). 5. Diurmal variations in discharge and water quality are influenced clearly by domestic and industrial waste waters (Fig.7, 8).ed clearly by domestic and industrial waste waters (Fig.7, 8).

  • PDF

Examination of Topographical Shape Change in River using Time-series Aerial Photo (시계열 영상정보를 이용한 하천 지형태 변화 검토)

  • Lee, Geun-Sang;Lee, Hyun-Seok;Hwang, Eui-Ho;Lee, Eul-Rae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2136-2140
    • /
    • 2008
  • Recently environmental and ecological river management have been held in high repute, therefore it needs to river restoration and management works considering topographical shape of river. This study estimated the change of topographical shape in Gab- and Yudeung-River using time-series aerial photos. Especially, we selected location points of river facilities as weir and bridge that were built and removed and the confluence of Gab- and Yudeung-River. And we investigated the change of time-series flux and flow-direction. Also, through the estimation of sediment by river flow together, it is possible to supply decision making data that is very important to instream flow and environmental and ecological river restoration in urban stream.

  • PDF