• Title/Summary/Keyword: strawberry diseases

Search Result 35, Processing Time 0.03 seconds

Effect of Burkholderia contaminans on Postharvest Diseases and Induced Resistance of Strawberry Fruits

  • Wang, Xiaoran;Shi, Junfeng;Wang, Rufu
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.403-411
    • /
    • 2018
  • This study takes strawberry-fruits as the test material and discusses the effect of Burkholderia contaminans B-1 on preventing postharvest diseases and inducing resistance-related substances in strawberry-fruits. Soaking and wound inoculating is performed to analyze the inhibitory effects of different treatment solutions on the gray mold of postharvest strawberry-fruits. The count of antagonistic bacteria colonies in the wound is found, and the dynamic growth of antagonistic bacteria and the pathogenic fungus is observed by electron microscopy. The results indicated that, either by soaking/wound-inoculating, the fermentation and suspension of antagonistic bacteria significantly reduced the incidence of postharvest diseases of strawberry-fruits. With wound inoculation, the inhibition rate of antagonist fermentation and suspension ($1{\times}10^{10}cfu/ml$) respectively reached 77.4% and 66.7%. It also led to a significant increase in the activity of resistance-related enzymes, i.e., phenylalanine ammonia lyase (PAL), 4-coumarate coenzyme A ligase (4CL), cinnamate-4-hydroxylase (C4H) and chalcone isomerase (CHI). On 1 d and 2 d post-treatment, the activity of 4CL was respectively 3.78 and 6.1 times of the control, and on 5 d, the activity of PAL was increased by 4.47 times the control. The treatment of antagonistic bacteria delayed the peaking of cinnamyl-alcohol dehydrogenase (CAD) activity and promoted the accumulation of lignin and total phenols. The antagonistic bacteria could be well colonized in the wounds. On 4-5 d post-inoculation, the count of colonies was $10^8$ times of that upon inoculation. Electronmicroscopy indicated that the antagonistic bacteria delayed the germination of pathogenic spores in the wounds, and inhibited further elongations of the mycelia.

Co-treatment with Origanum Oil and Thyme Oil Vapours Synergistically Limits the Growth of Soil-borne Pathogens Causing Strawberry Diseases

  • Jong Hyup, Park;Min Geun, Song;Sang Woo, Lee;Sung Hwan, Choi;Jeum Kyu, Hong
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.673-678
    • /
    • 2022
  • Vapours from origanum oil (O) and thyme oil (T) were applied to the four soil-borne strawberry pathogens Fusarium oxysporum f. sp. fragariae, Colletotrichum fructicola, Lasiodiplodia theobromae, and Phytophthora cactorum, causing Fusarium wilt, anthracnose, dieback, and Phytophthora rot, respectively. Increasing T vapour doses in the presence of O vapour strongly inhibited mycelial growths of the four pathogens and vice versa. When mycelia of F. oxysporum f. sp. fragariae and P. cactorum exposed to the combined O + T vapours were transferred to the fresh media, mycelial growth was restored, indicating fungistasis by vapours. However, the mycelial growth of C. fructicola and L. theobromae exposed to the combined O + T vapours have been slightly retarded in the fresh media. Prolonged exposure of strawberry pathogens to O + T vapours in soil environments may be suggested as an alternative method for eco-friendly disease management.

Chemical Fungicides and Bacillus siamensis H30-3 against Fungal and Oomycete Pathogens Causing Soil-Borne Strawberry Diseases

  • Park, Bo Reen;Son, Hyun Jin;Park, Jong Hyeob;Kim, Eun Soo;Heo, Seong Jin;Youn, Hae Ree;Koo, Young Mo;Heo, A Yeong;Choi, Hyong Woo;Sang, Mee Kyung;Lee, Sang-Woo;Choi, Sung Hwan;Hong, Jeum Kyu
    • The Plant Pathology Journal
    • /
    • v.37 no.1
    • /
    • pp.79-85
    • /
    • 2021
  • Chemical and biological agents were evaluated to inhibit Colletotrichum fructicola, Phytophthora cactorum, and Lasiodiplodia theobromae causing strawberry diseases. Mycelial growths of C. fructicola were gradually arrested by increasing concentrations of fungicides pyraclostrobin and iminoctadine tris (albesilate). P. cactorum and L. theobromae were more sensitive to pyraclostrobin compared to C. fructicola, but iminoctadine tris (albesilate) was not or less effective to limit P. cactorum or L. theobromae, respectively. Bacillus siamensis H30-3 was antagonistic against the three pathogens by diffusible as well as volatile molecules, and evidently reduced aerial mycelial formation of P. cactorum. B. siamensis H30-3 growth was declined by at least 0.025 mg/ml of pyraclostrobin. The two fungicides additively inhibited mycelial growths of C. fructicola, but not of P. cactorum and L. theobromae. B. siamensis H30-3 volatiles led to less growth of C. fructicola than one reduced by the fungicides. Taken together, in vitro antimicrobial activities of the two fungicides together with or without B. siamensis H30-3 volatiles may be cautiously incorporated into integrated management of strawberry diseases dependent on causal pathogens.

Comparison of Environmental-Friendly and Chemical Spray Calendar for Controlling Diseases and Insect Pests of Strawberry during Nursery Seasons (딸기 육묘기 병해충 관리를 위한 친환경과 화학적 방제력 비교)

  • Nam, Myeong Hyeon;Kim, Hyun Sook;Kim, Tae Il;Lee, Eun Mo
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.273-279
    • /
    • 2015
  • Major diseases and insect pests in nursery season of strawberry were anthracnose, powdery mildew, Fusarium wilt, two-spotted spider mite, and aphids. Environmental-friendly and chemical application schedules can improve diseases and insect pests control with relatively fewer organic and chemical materials inputs compared with spray programs when it's occurred. Field experiments were performed in 2012 to 2013 according to calendar-based spray programs with environmental-friendly spray calendar (EFSC) and conventional chemical spray calendar (CSC) for controlling diseases and insect pests of strawberry plants cv, Seolhyang during the two nursery seasons. EFSC did reduce the incidence of diseases and insect pests as compared to the non-treated control. Incidence of anthracnose and powdery mildew by EFSC and CSC was similar in 2012 and 2013 seasons. In addition, occurrence of two-spotted spider mite in EFSC in 2013 was similar to those of CSC and was shown highly in early and mid-June both 2012 and 2013 seasons. Occurrence of aphid in EFSC was shown highly in early and mid-June both 2012 and 2013 seasons. These results suggest that EFSC program may be effective for controlling strawberry diseases and insect pests by using environmental-friendly organic materials.

Antagonistic Effect of Streptomyces sp. BS062 against Botrytis Diseases

  • Kim, Young-Sook;Lee, In-Kyoung;Yun, Bong-Sik
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.339-342
    • /
    • 2015
  • The use of microorganisms and their secreted molecules to prevent plant diseases is considered an attractive alternative and way to supplement synthetic fungicides for the management of plant diseases. Strain BS062 was selected based on its ability to inhibit the mycelial growth of Botrytis cinerea, a major causal fungus of postharvest root rot of ginseng and strawberry gray mold disease. Strain BS062 was found to be closely related to Streptomyces hygroscopicus (99% similarity) on the basis of 16S ribosomal DNA sequence analysis. Postharvest root rot of ginseng and strawberry gray mold disease caused by B. cinerea were controlled up to 73.9% and 58%, respectively, upon treatment with culture broth of Streptomyces sp. BS062. These results suggest that strain BS062 may be a potential agent for controlling ginseng postharvest root rot and strawberry gray mold disease.

A Hierarchical Deep Convolutional Neural Network for Crop Species and Diseases Classification (Deep Convolutional Neural Network(DCNN)을 이용한 계층적 농작물의 종류와 질병 분류 기법)

  • Borin, Min;Rah, HyungChul;Yoo, Kwan-Hee
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.11
    • /
    • pp.1653-1671
    • /
    • 2022
  • Crop diseases affect crop production, more than 30 billion USD globally. We proposed a classification study of crop species and diseases using deep learning algorithms for corn, cucumber, pepper, and strawberry. Our study has three steps of species classification, disease detection, and disease classification, which is noteworthy for using captured images without additional processes. We designed deep learning approach of deep learning convolutional neural networks based on Mask R-CNN model to classify crop species. Inception and Resnet models were presented for disease detection and classification sequentially. For classification, we trained Mask R-CNN network and achieved loss value of 0.72 for crop species classification and segmentation. For disease detection, InceptionV3 and ResNet101-V2 models were trained for nodes of crop species on 1,500 images of normal and diseased labels, resulting in the accuracies of 0.984, 0.969, 0.956, and 0.962 for corn, cucumber, pepper, and strawberry by InceptionV3 model with higher accuracy and AUC. For disease classification, InceptionV3 and ResNet 101-V2 models were trained for nodes of crop species on 1,500 images of diseased label, resulting in the accuracies of 0.995 and 0.992 for corn and cucumber by ResNet101 with higher accuracy and AUC whereas 0.940 and 0.988 for pepper and strawberry by Inception.

Strawberry Virus Diseases Occurring in Korea, 2007-2008 (우리나라에서 발생하는 딸기 바이러스병(2007-2008))

  • Choi, Gug-Seoun;Lee, Jin-A;Cho, Jeom-Deog;Chung, Bong-Nam;Cho, In-Sook;Kim, Jeong-Soo
    • Research in Plant Disease
    • /
    • v.15 no.1
    • /
    • pp.8-12
    • /
    • 2009
  • Virus disease surveys of strawberries cultivated and preserved as germplasm resources in Korea was conducted during 2007-2008. Virus detection was conducted by RT-PCR using total RNAs extracted from strawberry samples. We detected the infection with Strawberry mild yellow edge virus (SMYEV), Strawberry mottle virus (SMoV), Strawberry vein banding virus (SVBV) and Strawberry pallidosis associated virus (SPaV) while no infection with Strawberry crinkle virus (SCV), Strawberry necrotic shock virus (SNSV), Strawberry latent ring spot virus (SLRSV) and Arabis mosaic virus (ArMV) was observed. The infection rate of virus disease on 4 cultivars including Seolhyang, Maehyang, Gumhyang, and Dahong, bred in Korea, was 0.1, 1.9, 0, and 0%, respectively. Surprisingly, however, cultivar Red Peal introduced from Japan in 1997 revealed 48.3% virus infection rate. SMYEV, SMoV and SPaV were also identified in strawberries growing in the farm fields of Korea. In the field, however, SMYEV was the most predominant virus (97.4%) among those 3 identified viruses. SVBV was detected only in strawberry kept as a germplasm.

A Model of Strawberry Pest Recognition using Artificial Intelligence Learning

  • Guangzhi Zhao
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.133-143
    • /
    • 2023
  • In this study, we propose a big data set of strawberry pests collected directly for diagnosis model learning and an automatic pest diagnosis model architecture based on deep learning. First, a big data set related to strawberry pests, which did not exist anywhere before, was directly collected from the web. A total of more than 12,000 image data was directly collected and classified, and this data was used to train a deep learning model. Second, the deep-learning-based automatic pest diagnosis module is a module that classifies what kind of pest or disease corresponds to when a user inputs a desired picture. In particular, we propose a model architecture that can optimally classify pests based on a convolutional neural network among deep learning models. Through this, farmers can easily identify diseases and pests without professional knowledge, and can respond quickly accordingly.

Evaluation of Antimicrobial Activity and Disease Control Efficacy of Sodium Dichloroisocyanurate (NaDCC) Against Major Strawberry Diseases (딸기 주요 병원균에 대한 친환경제제 NaDCC의 항균활성 및 병 방제효과 평가)

  • Kim, Da-Ran;Gang, Gun-Hye;Cho, Hyun-Ji;Yoon, Hae-Suk;Kwak, Youn-Sig
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.1
    • /
    • pp.47-53
    • /
    • 2015
  • Various diseases occur in fruits, leave and roots during strawberry cultivation and cause severe economical damage and huge amount of chemical fungicide use. Recently, as consumers' interest in safety of foods and organic agriculture produces have increased, control measures using alternatives for chemical fungicides have been newly developed in various ways. This study was conducted to test antifungal activity and control effect of sodium dichloroisocyanurate (NaDCC), using as disinfectants, against major disease pathogens of strawberry, Fusarium oxysporum (Fusarium wilt), Colletotrichum gloeosporioides (Anthracnose) and Phytophthora sp. (Phytophthora blight), and Xanthomonas fragariae (bacterial angular leaf spot) and evaluate availability as environment-friendly materials. When NaDCC was treated at the concentration range of 150 to 300 ppm, it suppressed significantly hyphal growth and reduced spore germination by more than 28%. In field condition, NaDCC showed excellent control effect (control value: 50%) against the bacterial angular leaf spot disease. Based on above-described results, we suggested that NaDCC can be used as alternative candidates to chemical pesticide alternatives of for controlling strawberry diseases.