DOI QR코드

DOI QR Code

Chemical Fungicides and Bacillus siamensis H30-3 against Fungal and Oomycete Pathogens Causing Soil-Borne Strawberry Diseases

  • Park, Bo Reen (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Son, Hyun Jin (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Park, Jong Hyeob (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Kim, Eun Soo (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Heo, Seong Jin (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Youn, Hae Ree (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Koo, Young Mo (Department of Plant Medicine, Andong National University) ;
  • Heo, A Yeong (Department of Plant Medicine, Andong National University) ;
  • Choi, Hyong Woo (Department of Plant Medicine, Andong National University) ;
  • Sang, Mee Kyung (National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Sang-Woo (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Choi, Sung Hwan (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Hong, Jeum Kyu (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
  • Received : 2020.12.28
  • Accepted : 2021.01.13
  • Published : 2021.02.01

Abstract

Chemical and biological agents were evaluated to inhibit Colletotrichum fructicola, Phytophthora cactorum, and Lasiodiplodia theobromae causing strawberry diseases. Mycelial growths of C. fructicola were gradually arrested by increasing concentrations of fungicides pyraclostrobin and iminoctadine tris (albesilate). P. cactorum and L. theobromae were more sensitive to pyraclostrobin compared to C. fructicola, but iminoctadine tris (albesilate) was not or less effective to limit P. cactorum or L. theobromae, respectively. Bacillus siamensis H30-3 was antagonistic against the three pathogens by diffusible as well as volatile molecules, and evidently reduced aerial mycelial formation of P. cactorum. B. siamensis H30-3 growth was declined by at least 0.025 mg/ml of pyraclostrobin. The two fungicides additively inhibited mycelial growths of C. fructicola, but not of P. cactorum and L. theobromae. B. siamensis H30-3 volatiles led to less growth of C. fructicola than one reduced by the fungicides. Taken together, in vitro antimicrobial activities of the two fungicides together with or without B. siamensis H30-3 volatiles may be cautiously incorporated into integrated management of strawberry diseases dependent on causal pathogens.

Keywords

References

  1. Asari, S., Matzen, S., Petersen, M. A., Bejai, S. and Meijer, J. 2016. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens. FEMS Microbiol. Ecol. 92:fiw070. https://doi.org/10.1093/femsec/fiw070
  2. Barahona, E., Navazo, A., Martinez-Granero, F., Zea-Bonilla, T., Perez-Jimenez, R. M., Martin, M. and Rivilla, R. 2011. Pseudomonas fluorescence F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. Appl. Environ. Microbiol. 77:5412-5419. https://doi.org/10.1128/AEM.00320-11
  3. Burruano, S., Mondello, V., Conigliaro, G., Alfonzo, A., Spagnolo, A. and Mugnai, L. 2008. Grapevine decline in Italy caused by Lasiodiplodia theobromae. Phytopathol. Mediterr. 47:132-136.
  4. Conner, R. L., McAndrew, D. W., Kiehn, F. A., Chapman, S. R. and Froese, N. T. 2004. Effect of foliar fungicide application timing on the control of bean anthracnose in the navy bean 'Navigator'. Can. J. Plant Pathol. 26:299-303. https://doi.org/10.1080/07060660409507147
  5. Do, J., Min, J., Kim, Y., Park, Y. and Kim, H. T. 2020. Detection of fungicidal activities against Alternaria dauci causing Alternaria leaf spot in carrot and monitoring for the fungicide resistance. Res. Plant Dis. 26:61-71 (in Korean). https://doi.org/10.5423/RPD.2020.26.2.61
  6. Ellis, M. A., Wilcox, W. F. and Madden, L. V. 1998. Efficacy of metalaxyl, fosetyl-aluminum, and straw mulch for control of strawberry leather rot caused by Phytophthora cactorum. Plant Dis. 82:329-332. https://doi.org/10.1094/PDIS.1998.82.3.329
  7. Forcelini, B. B., Seijo, T. E., Amiri, A. and Peres, N. A. 2016. Resistance in strawberry isolates of Colletotrichum acutatum from Florida to quinone-outside inhibitor fungicides. Plant Dis. 100:2050-2056. https://doi.org/10.1094/PDIS-01-16-0118-RE
  8. Gan, P., Nakata, N., Suzuki, T. and Shirasu, K. 2017. Markers to differentiate species of anthracnose fungi identity Colletotrichum fructicola as the predominant virulent species in strawberry plants in Chiba Prefecture of Japan. J. Gen. Plant Pathol. 83:14-22. https://doi.org/10.1007/s10327-016-0689-0
  9. Gao, Y.-Y., He, L.-F., Li, B.-X., Mu, W., Lin, J. and Liu, F. 2017. Sensitivity of Colletotrichum acutatum to six fungicides and reduction in incidence and severity of chili anthracnose using pyraclostrobin. Australs. Plant Pathol. 46:521-528. https://doi.org/10.1007/s13313-017-0518-8
  10. Grove, G. G., Madden, L. V., Ellis, M. A. and Schmitthenner, A. F. 1985. Influence of temperature and wetness duration on infection of immature strawberry fruit by Phytophthora cactorum. Phytopathology 75:165-169. https://doi.org/10.1094/Phyto-75-165
  11. Hong, J. K., Kim, H. J., Jung, H., Yang, H. J., Kim, D. H., Sung, C. H., Park, C.-J. and Chang, S. W. 2016. Differential control efficacies of vitamin treatments against bacterial wilt and grey mould diseases in tomato plants. Plant Pathol. J. 32:469-480. https://doi.org/10.5423/PPJ.OA.03.2016.0076
  12. Jacobsen, B. J., Zidack, N. K. and Larson, B. J. 2004. The role of Bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology 94:1272-1275. https://doi.org/10.1094/PHYTO.2004.94.11.1272
  13. Kim, S.-H., Choi, S.-Y., Lim, Y.-S., Yoon, J.-T. and Choi, B.-S. 2002. Effect of chemical treatment on the control of strawberry anthracnose caused by Colletotrichum sp. Res. Plant Dis. 8:50-54 (in Korean). https://doi.org/10.5423/RPD.2002.8.1.050
  14. Kim, S., Min, J. and Kim, H. T. 2019. Occurrence and mechanism of fungicide resistance in Colletotrichum acutatum causing pepper anthracnose against pyraclostrobin. Korean J. Pestic. Sci. 23:202-211 (in Korean). https://doi.org/10.7585/kjps.2019.23.3.202
  15. Kim, Y. S., Kwon, H. T., Hong, S.-B. and Jeon, Y. 2020. Occurrence of bunch rot disease caused by Aspergillus tubingensis on Shine Muscat grape. Res. Plant Dis. 25:220-225 (in Korean). https://doi.org/10.5423/RPD.2019.25.4.220
  16. Korsten, L., De Villiers, E. E., Wehner, F. C. and Kotze, J. M. 1997. Field sprays of Bacillus subtilis and fungicides for control of preharvest fruit diseases of avocado in South Africa. Plant Dis. 81:455-459. https://doi.org/10.1094/PDIS.1997.81.5.455
  17. Kurze, S., Bahl, H., Dahl, R. and Berg, G. 2001. Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48. Plant Dis. 85:529-534. https://doi.org/10.1094/PDIS.2001.85.5.529
  18. Lee, Y. H., Cho, Y.-S., Lee, S. W. and Hong, J. K. 2012. Chemical and biological controls of balloon flower stem rots caused by Rhizoctonia solani and Sclerotinia sclerotiorum. Plant Pathol. J. 28:156-163. https://doi.org/10.5423/PPJ.2012.28.2.156
  19. Lee, Y. H., Jang, S. J., Han, J.-H., Bae, J. S., Shin, H., Park, H. J., Sang, M. K., Han, S. H., Kim, K. S., Han, S.-W. and Hong, J. K. 2018. Enhanced tolerance of Chinese cabbage seedlings mediated by Bacillus aryabhattai H26-2 and B. siamensis H30-3 against high temperature stress and fungal infections. Plant Pathol. J. 34:555-566. https://doi.org/10.5423/PPJ.OA.07.2018.0130
  20. Li, Z., Wang, Y.-T., Gao, L., Wang, F., Ye, J.-L. and Li, G.-H. 2014. Biochemical changes and defence responses during the development of peach gummosis caused by Lasiodiplodia theobromae. Eur. J. Plant Pathol. 138:195-207. https://doi.org/10.1007/s10658-013-0322-4
  21. Lim, S. M., Yoon, M.-Y., Choi, G. J., Choi, Y. H., Jang, K. S., Shin, T. S., Park, H. W., Yu, N. H., Kim, Y. H. and Kim, J.-C. 2017. Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi. Plant Pathol. J. 33:488-498. https://doi.org/10.5423/PPJ.OA.04.2017.0073
  22. Lim, Y.-S., Jung, K.-C., Kim, S.-H. and Bark, S.-D. 1998. Crown rot of strawberry (Fragaria ananassa) caused by Phytophthora cactorum. Korean J. Plant Pathol. 14:753-737.
  23. MacKenzie, S. J., Mertely, J. C. and Peres, N. A. 2009. Curative and protectant activity of fungicides for control of crown rot of strawberry caused by Colletotrichum gloeosporioides. Plant Dis. 93:815-820. https://doi.org/10.1094/PDIS-93-8-0815
  24. Madden, L. V., Ellis, M. A., Grove, G. G., Reynolds, K. M. and Wilson, L. L. 1991. Epidemiology and control of leather rot of strawberries. Plant Dis. 75:439-446. https://doi.org/10.1094/PD-75-0439
  25. Mochizuki, M., Yamamoto, S., Aoki, Y. and Suzuki, S. 2012. Isolation and characterization of Bacillus amyloliquefaciens S13-3 as a biological control agent for anthracnose caused by Colletotrichum gloeosporioides. Biocontrol Sci. Technol. 22:697-709. https://doi.org/10.1080/09583157.2012.679644
  26. Morita, T., Tanaka, I., Ryuda, N., Ikari, M., Ueno, D. and Someya, T. 2019. Antifungal spectrum characterization and identification of strong volatile organic compounds produced by Bacillus pumilus TM-R. Heliyon 5:e01817. https://doi.org/10.1016/j.heliyon.2019.e01817
  27. Nam, M. H., Lee, I. H. and Kim, H. G. 2014. Dipping strawberry plants in fungicides before planting to control anthracnose. Res. Plant Dis. 20:54-58 (in Korean). https://doi.org/10.5423/RPD.2014.20.1.054
  28. Nam, M. H., Park, M. S., Kim, H. S., Kim, T. I., Lee, E. M., Park, J. D. and Kim, H. G. 2016. First report of dieback caused by Lasiodiplodia theobromae in strawberry plants in Korea. Mycobiology 44:319-324. https://doi.org/10.5941/MYCO.2016.44.4.319
  29. Nam, M. H., Park, M. S., Lee, H. D. and Yu, S. H. 2013. Taxonomic re-evaluation of Colletotrichum gloeosporioides isolated from strawberry in Korea. Plant Pathol. J. 29:317-322. https://doi.org/10.5423/PPJ.NT.12.2012.0188
  30. Porras, M., Barrau, C., Arroyo, F. T., Santos, B., Blanco, C. and Romero, F. 2007. Reduction of Phytophthora cactorum in strawberry fields by Trichoderma spp. and soil solarization. Plant Dis. 91:142-146. https://doi.org/10.1094/PDIS-91-2-0142
  31. Rebollar-Alviter, A., Madden, L. V. and Ellis, M. A. 2007. Preand post-infection activity of azoxystrobin, pyraclostrobin, mefenoxam, and phosphite against leather rot of strawberry, caused by Phytophthora cactorum. Plant Dis. 91:559-564. https://doi.org/10.1094/PDIS-91-5-0559
  32. Saeed, E. E., Sham, A., AbuZarqa, A., Al Shurafa, K. A., Al Naqbi, T. S., Iratni, R., El-Tarabily, K. and AbuQamar, S. F. 2017. Detection and management of mango dieback disease in the United Arab Emirates. Int. J. Mol. Sci. 18:2086. https://doi.org/10.3390/ijms18102086
  33. Samuelian, S. K., Greer, L. A., Savocchia, S. and Steel, C. C. 2014. Application of Cabrio (a.i. pyraclostrobin) at flowering and veraison reduces the severity of bitter rot (Greeneria uvicola) and ripe rot (Colletotrichum acutatum) of grapes. Aust. J. Grape Wine Res. 20:292-298. https://doi.org/10.1111/ajgw.12073
  34. Shin, D. J., Yoo, S.-J., Hong, J. K., Weon, H.-Y., Song, J. and Sang, M. K. 2019. Effect of Bacillus aryabhattai H26-2 and B. siamensis H30-3 on growth promotion and alleviation of heat and drought stresses in Chinese cabbage. Plant Pathol. J. 35:178-187. https://doi.org/10.5423/PPJ.NT.08.2018.0159
  35. Tortora, M. L., Diaz-Ricci, J. C. and Pedraza, R. O. 2012. Production of strawberry plants (Fragaria ananassa Duch.) against anthracnose disease induced by Azospirillum brasilense. Plant Soil 356:279-290. https://doi.org/10.1007/s11104-011-0916-6
  36. Turechek, W. W., Peres, N. A. and Werner, N. A. 2006. Pre- and post-infection activity of pyraclostrobin for control of anthracnose fruit rot of strawberry caused by Colletotrichum acutatum. Plant Dis. 90:862-868. https://doi.org/10.1094/PD-90-0862
  37. Urbez-Torres, J. R., Leavitt, G. M., Guerrero, J. C., Guevara, J. and Gubler, W. D. 2008. Identification and pathogenicity of Lasiodiplodia theobromae and Diplodia seriata, the causal agents of bot canker disease of grapevines in Mexico. Plant Dis. 92:519-529. https://doi.org/10.1094/PDIS-92-4-0519
  38. Yamamoto, S., Shiraishi, S. and Suzuki, S. 2015. Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Lett. Appl. Microbiol. 60:379-386. https://doi.org/10.1111/lam.12382
  39. Yildiz, A., Benlioglu, K. and Benlioglu, H. S. 2014. First report of strawberry dieback caused by Lasiodiplodia theobromae. Plant Dis. 98:1579.
  40. Zhu, J., Zhang, L., Ma, D., Gao, Y., Mu, W. and Liu, F. 2019. A bioactivity and biochemical analysis of iminoctadine tris (albesilate) as a fungicide against Corynespora cassiicola. Pestic. Biochem. Physiol. 158:121-127. https://doi.org/10.1016/j.pestbp.2019.04.016