• Title/Summary/Keyword: stratified cluster sampling

Search Result 122, Processing Time 0.023 seconds

Unbiased Balanced Half-Sample Variance Estimation in Stratified Two-stage Sampling

  • Kim, Kyu-Seong
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.4
    • /
    • pp.459-469
    • /
    • 1998
  • Balanced half sample method is a simple variance estimation method for complex sampling designs. Since it is simple and flexible, it has been widely used in large scale sample surveys. However, the usual BHS method overestimate the true variance in without replacement sampling and two-stage cluster sampling. Focusing on this point , we proposed an unbiased BHS variance estimator in a stratified two-stage cluster sampling and then described an implementation method of the proposed estimator. Finally, partially BHS design is explained as a tool of reducing the number of replications of the proposed estimator.

  • PDF

A Optimal Cluster Size in Stratified Two-Stage Cluster Sampling (층화 2-단 표본 추출시 최적 집락의 크기 결정)

  • 신민웅;신기일
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.207-224
    • /
    • 2000
  • Generally cluster size is predetermined when we use the stratified two-stage cluster sampling But in case that the sizes of clusters vary greatly one may want to make the sizes to be about equal. In this paper we study the optimal cluster size in stratified twostage cluster sampling. Also we find the optimal primary sampling unit sizes and optimal secondary sampling unit sizes under the given cost restriction.

  • PDF

A composite estimator for stratified two stage cluster sampling

  • Lee, Sang Eun;Lee, Pu Reum;Shin, Key-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 2016
  • Stratified cluster sampling has been widely used for effective parameter estimations due to reductions in time and cost. The probability proportional to size (PPS) sampling method is used when the number of cluster element are significantly different. However, simple random sampling (SRS) is commonly used for simplicity if the number of cluster elements are almost the same. Also it is known that the ratio estimator produces a good performance when the total number of population elements is known. However, the two stage cluster estimator should be used if the total number of elements in population is neither known nor accurate. In this study we suggest a composite estimator by combining the ratio estimator and the two stage cluster estimator to obtain a better estimate under a certain population circumstance. Simulation studies are conducted to compare the superiority of the suggested estimator with two other estimators.

Development of a Forest Inventory System for the Sustainable Forest Management (지속가능한 산림경영에 적합한 표본조사 방법의 개발)

  • Shin, Man Yong;Han, Won Sung
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.3
    • /
    • pp.370-377
    • /
    • 2006
  • This study was conducted to develop an efficient method of sampling design appropriate for the sustainable forest management. For this, data were collected in Yangpyung-Gun, Gyunggi Province based on three different sampling designs such as systematic design, systematic cluster design, and stratified cluster design. Based on evaluation statistics, the sampling designs were compared to select a sampling method fitted to sustainable forest management. It was found that the systematical cluster sampling is the most efficient sampling method in terms of feasibility for sustainable forest management. It was also recommended that the sample plots should be made as a cluster of triangle-shape. The clusters should be consisted of a main plot and three sub-plots. And the sub-plots should be arranged with a distance of 50m from the main plot in the center of cluster.

Variance estimation for distribution rate in stratified cluster sampling with missing values

  • Heo, Sunyeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.443-449
    • /
    • 2017
  • Estimation of population proportion like the distribution rate of LED TV and the prevalence of a disease are often estimated based on survey sample data. Population proportion is generally considered as a special form of population mean. In complex sampling like stratified multistage sampling with unequal probability sampling, the denominator of mean may be random variable and it is estimated like ratio estimator. In this research, we examined the estimation of distribution rate based on stratified multistage sampling, and determined some numerical outcomes using stratified random sample data with about 25% of missing observations. In the data used for this research, the survey weight was determined by deterministic way. So, the weights are not random variable, and the population distribution rate and its variance estimator can be estimated like population mean estimation. When the weights are not random variable, if one estimates the variance of proportion estimator using ratio method, then the variances may be inflated. Therefore, in estimating variance for population proportion, we need to examine the structure of data and survey design before making any decision for estimation methods.

A Study on the Stratified Cluster Replicated Systematic Unrelated Question Model (층화 집락 반복계통 무관질문모형에 관한 연구)

  • Lee, Gi-Sung
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.209-222
    • /
    • 2013
  • We apply stratified cluster sampling to a replicated systematic unrelated question model for a large scale survey in which the population is comprised of several strata developed by several clusters and with sensitive parameters. We first present a replicated systematic unrelated question model using an unrelated question model to procure sensitive information from the population of clusters and then develop a suggested model to an unrelated question by a stratified cluster replicated systematic sampling that can be used in large population of strata. We cover the proportional and optimum allocation for the suggested model. Finally, we compare and analyze the efficiency of the suggested model with the replicated systematic unrelated question model.

Two-stage Sampling for Estimation of Prevalence of Bovine Tuberculosis (이단계표본추출을 이용한 소결핵병 유병률 추정)

  • Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.28 no.4
    • /
    • pp.422-426
    • /
    • 2011
  • For a national survey in which wide geographic region or an entire country is targeted, multi-stage sampling approach is widely used to overcome the problem of simple random sampling, to consider both herd- and animallevel factors associated with disease occurrence, and to adjust clustering effect of disease in the population in the calculation of sample size. The aim of this study was to establish sample size for estimating bovine tuberculosis (TB) in Korea using stratified two-stage sampling design. The sample size was determined by taking into account the possible clustering of TB-infected animals on individual herds to increase the reliability of survey results. In this study, the country was stratified into nine provinces (administrative unit) and herd, the primary sampling unit, was considered as a cluster. For all analyses, design effect of 2, between-cluster prevalence of 50% to yield maximum sample size, and mean herd size of 65 were assumed due to lack of information available. Using a two-stage sampling scheme, the number of cattle sampled per herd was 65 cattle, regardless of confidence level, prevalence, and mean herd size examined. Number of clusters to be sampled at a 95% level of confidence was estimated to be 296, 74, 33, 19, 12, and 9 for desired precision of 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06, respectively. Therefore, the total sample size with a 95% confidence level was 172,872, 43,218, 19,224, 10,818, 6,930, and 4,806 for desired precision ranging from 0.01 to 0.06. The sample size was increased with desired precision and design effect. In a situation where the number of cattle sampled per herd is fixed ranging from 5 to 40 with a 5-head interval, total sample size with a 95% confidence level was estimated to be 6,480, 10,080, 13,770, 17,280, 20.925, 24,570, 28,350, and 31,680, respectively. The percent increase in total sample size resulting from the use of intra-cluster correlation coefficient of 0.3 was 22.2, 32.1, 36.3, 39.6, 41.9, 42.9, 42,2, and 44.3%, respectively in comparison to the use of coefficient of 0.2.

An Evaluation of Sampling Design for Estimating an Epidemiologic Volume of Diabetes and for Assessing Present Status of Its Control in Korea (우리나라 당뇨병의 역학적 규모와 당뇨병 관리현황 파악을 위한 표본설계의 평가)

  • Lee, Ji-Sung;Kim, Jai-Yong;Baik, Sei-Hyun;Park, Ie-Byung;Lee, June-Young
    • Journal of Preventive Medicine and Public Health
    • /
    • v.42 no.2
    • /
    • pp.135-142
    • /
    • 2009
  • Objectives : An appropriate sampling strategy for estimating an epidemiologic volume of diabetes has been evaluated through a simulation. Methods : We analyzed about 250 million medical insurance claims data submitted to the Health Insurance Review & Assessment Service with diabetes as principal or subsequent diagnoses, more than or equal to once per year, in 2003. The database was re-constructed to a 'patient-hospital profile' that had 3,676,164 cases, and then to a 'patient profile' that consisted of 2,412,082 observations. The patient profile data was then used to test the validity of a proposed sampling frame and methods of sampling to develop diabetic-related epidemiologic indices. Results : Simulation study showed that a use of a stratified two-stage cluster sampling design with a total sample size of 4,000 will provide an estimate of 57.04%(95% prediction range, 49.83 - 64.24%) for a treatment prescription rate of diabetes. The proposed sampling design consists, at first, stratifying the area of the nation into "metropolitan/city/county" and the types of hospital into "tertiary/secondary/primary/clinic" with a proportion of 5:10:10:75. Hospitals were then randomly selected within the strata as a primary sampling unit, followed by a random selection of patients within the hospitals as a secondly sampling unit. The difference between the estimate and the parameter value was projected to be less than 0.3%. Conclusions : The sampling scheme proposed will be applied to a subsequent nationwide field survey not only for estimating the epidemiologic volume of diabetes but also for assessing the present status of nationwide diabetes control.

Classification of Bodytype of Lower Part on Adult Male for the Apparel Sizing System (남성복(男性服)의 치수규격을 위한 하체부(下體部)의 체형분류(II))

  • Kim, Ku Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.4
    • /
    • pp.602-607
    • /
    • 1993
  • Concept of the comfort and fitness becomes a major concern in the basic function of the ready-made clothes. This research was performed to classify and characterize Korean adult males anthropometrically. Sample size was 1290 subjects and their age range was from 19 to 54 years old. Sampling was carried out by the stratified sampling method. 75 variables in total were applied to classify the bodytypes. Data were analyzed by the multivariate method, especially factor and cluster analysis. The high factor loading items extracted by factor analysis were based to determine the variables of the cluster analysis for the similar bodytypes respectively. In the part of the lower body, 14 variables from the data were applied to classify the bodytypes of lower part by Ward's minimum variance method. The group fanning a cluster were subdivided into 5 sets by cross-tabulation extracted by the hierarchical cluster analysis. Type 3 and 4 in lower body were composed of the majority of 53.1% of the subjects. The Korean adult males had relatively well-balanced in lower body.

  • PDF

Empirical Analysis on Rao-Scott First Order Adjustment for Two Population Homogeneity test Based on Stratified Three-Stage Cluster Sampling with PPS

  • Heo, Sunyeong
    • Journal of Integrative Natural Science
    • /
    • v.7 no.3
    • /
    • pp.208-213
    • /
    • 2014
  • National-wide and/or large scale sample surveys generally use complex sample design. Traditional Pearson chi-square test is not appropriate for the categorical complex sample data. Rao-Scott suggested an adjustment method for Pearson chi-square test, which uses the average of eigenvalues of design matrix of cell probabilities. This study is to compare the efficiency of Rao-Scott first order adjusted test to Wald test for homogeneity between two populations using 2009 Gyeongnam regional education offices's customer satisfaction survey (2009 GREOCSS) data. The 2009 GREOCSS data were collected based on stratified three-stage cluster sampling with probability proportional to size. The empirical results show that the Rao-Scott adjusted test statistic using only the variances of cell probabilities is very close to the Wald test statistic, which uses the covariance matrix of cell probabilities, under the 2009 GREOCSS data based. However it is necessary to be cautious to use the Rao-Scott first order adjusted test statistic in the place of Wald test because its efficiency is decreasing as the relative variance of eigenvalues of the design matrix of cell probabilities is increasing, specially more when the number of degrees of freedom is small.