• Title/Summary/Keyword: strain-based approach

Search Result 438, Processing Time 0.022 seconds

Theoretical Considerations on Effect of Environments on Strain Hardening

  • Lee, Byoung-Whie
    • Nuclear Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.21-31
    • /
    • 1971
  • The part of the work of plastic deformation of metal goes into the changes in the total surface free energy. This contribution is dependent on the specific surface free energy, which is affected by the environment. Based on thermodynamical approach, volume constancy requirement and adsorption induced two distinct dislocation interaction mechanisms for strengthening or weakening of metals at surface, theoretical derivation has been made to show that the environmental contribution on the strain hardening, the stress and the energy required for plastic deformation can be expressed in terms of solid surface tension in vacuum (${\gamma}$$_{s}$), interfacial tension (${\gamma}$$_{se}$ ), surface dislocation density ($\rho$$_{s}$), internal dislocation density ($\rho$$_{i}$) and fraction of surface site uncoverage (f). On the basis of theoretical derivation, the various mechanical behaviours under different environments are predicted.d.d.

  • PDF

Development of Induction Heating Simulator for the Bending of Plates with Primary Curvature (1차곡을 갖는 판의 곡가공을 위한 유도가열 시뮬레이터의 개발)

  • Lee, Young-Hwa;Ha, Yun-Sok;Jang, Chang-Doo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.241-248
    • /
    • 2005
  • The induction heating is more efficient for a plate bending because of its easy operation and control of working parameters compared with the heating by torch. In this study, a more efficient method was proposed for the prediction of plate bending. The existing analysis method using the axi-symmetric coil model could not handle the varying temperature during the heating and the forming process for curved plates like a saddle or a concave type curvature. The proposed method using some discrete steps in this study could overcome these difficulties and show more accurate, reasonable results in temperatures and deflections of fiat or curved plates. This method is composed of multi-disciplinary analyses such as an electro-magnetic analysis, a heat transfer analysis and a deformation analysis based on inherent strain approach.

Automotive Body Design (차량 차체 설계)

  • Lee, Jeong-Ick;Kim, Byoun-Gon;Chung, Tae-Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.10-22
    • /
    • 2008
  • In an automotive body structure, a design configuration that fulfills structural requirements such as deflection, stiffness and strength is necessary for structural design and is composed of various components. The integrated design is used to obtain a minimum weight structure with optimal or feasible performance based on conflicting constraints and boundaries. The mechanical design must begin with the definition of one or more concepts for structure and specification requirements in a given application environment. Structural optimization is then introduced as an integral part of the product design and used to yield a superior design to the conventional linear one. Although finite element analysis has been firmly established and extensively used in the past, geometric and material nonlinear analyses have also received considerable attention over the past decades. Also, nonlinear analysis may be useful in the area of structural designs where instability phenomena can include critical design criteria such as plastic strain and residual deformation. This proposed approach can be used for complicated structural analysis for an integrated design process with the nonlinear feasible local flexibilities between system and subsystems.

A Study of Bending Using Long Type Coil by Discrete Method (다분할 해석법에 의한 장형코일의 곡가공 연구)

  • Lee, Young-Hwa;Jang, Chang-Doo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.303-308
    • /
    • 2008
  • The induction heating is more efficient for a plate bending because of its easy operation and control of working parameters, compared with the heating by a gas torch. The existing axis symmetric analysis method could neither handle initial curved plates nor be used in the optimization of coil shapes because of its limit of an axis symmetric coil shape. But the proposed method using some discrete part models and analysis processes could overcome these difficulties and show more accurate results in temperatures and deflections of flat or curved plates with initial curvature than those in the existing axis symmetric analysis method. This method is composed of the multi-disciplinary analyses such as an electro magnetic analysis, a heat transfer analysis and a deformation analysis based on inherent strain approach per each step. Traditionally, the coil shape in the induction heating is circular shape and it needs the moving process along heating lines. To overcome this, the 'Long Type Coil' with some linear parallel coils was proposed. It did not need the moving process along heating lines and reduced the heating process time. The results of experiments were compared with those of the simulation.

Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates

  • Basha, Muhammad;Daikh, Ahmed Amine;Melaibari, Ammar;Wagih, Ahmed;Othman, Ramzi;Almitani, Khalid H;Hamed, Mostafa A.;Abdelrahman, Alaa;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.639-660
    • /
    • 2022
  • The bending and buckling behaviours of FG-GRNC laminated sandwich plates are investigated by using novel five-variables quasi 3D higher order shear deformation plate theory by considering the modified continuum nonlocal strain gradient theory. To calculate the effective Young's modulus of the GRNC sandwich plate along the thickness direction, and Poisson's ratio and mass density, the modified Halpin-Tsai model and the rule of the mixture are employed. Based on a new field of displacement, governing equilibrium equations of the GRNC sandwich plate are solved using a developed approach of Galerkin method. A detailed parametric analysis is carried out to highlight the influences of length scale and material scale parameters, GPLs distribution pattern, the weight fraction of GPLs, geometry and size of GPLs, the geometry of the sandwich plate and the total number of layers on the stresses, deformation and critical buckling loads. Some details are studied exclusively for the first time, such as stresses and the nonlocality effect.

On the thermo-mechanical vibration of an embedded short-fiber-reinforced nanobeam

  • Murat Akpinar;Busra Uzun;Mustafa Ozgur Yayli
    • Advances in nano research
    • /
    • v.17 no.3
    • /
    • pp.197-211
    • /
    • 2024
  • This work investigates the thermo-mechanical vibration frequencies of an embedded composite nano-beam restrained with elastic springs at both ends. Composite nanobeam consists of a matrix and short fibers as reinforcement elements placed inside the matrix. An approach based on Fourier sine series and Stokes' transform is adopted to present a general solution that can examine the elastic boundary conditions of the short-fiber-reinforced nanobeam considered with the Halpin-Tsai model. In addition to the elastic medium effect considered by the Winkler model, the size effect is also considered on the basis of nonlocal strain gradient theory. After creating an eigenvalue problem that includes all the mentioned parameters, this problem is solved to examine the effects of fiber and matrix properties, size parameters, Winkler stiffness and temperature change. The numerical results obtained at the end of the study show that increasing the rigidity of the Winkler foundation, the ratio of fiber length to diameter and the ratio of fiber Young's modulus to matrix Young's modulus increase the frequencies. However, thermal loads acting in the positive direction and an increase in the ratio of fiber mass density to matrix mass density lead to a decrease in frequencies. In this study, it is clear from the eigenvalue solution calculating the frequencies of thermally loaded embbeded short-fiber-reinforced nanobeams that changing the stiffness of the deformable springs provides frequency control while keeping the other properties of the nanobeam constant.

A robust nano-indentation modeling method for ion-irradiated FCC single crystals using strain-gradient crystal plasticity theory and particle swarm optimization algorithm

  • Van-Thanh Pham;Jong-Sung Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3347-3358
    • /
    • 2024
  • Addressing the challenge of identifying an appropriate set of material and irradiation parameters for accurate simulation models using crystal plasticity finite element method (CPFEM), this study proposes a novel two-stage method for nano-indentation modeling of ion-irradiated face-centered cubic (FCC) materials. It includes implementing the strain-gradient crystal plasticity (SGCP) theory with irradiation effects and the calibration of simulation parameters using the particle swarm optimization (PSO) algorithm with experimental data. The proposed method consists of two stages: establishing CPFEM without irradiation effects in stage 1 and modeling irradiation effects based on CPFEM in stage 2. Modeling the nano-indentation test of ion-irradiated stainless steel 304 (SS304) using real experimental data is conducted to evaluate the efficiency of the proposed method. The accuracy of the calibration method using PSO is verified through comparisons between simulation and experimental results for force-indentation depth and hardness-indentation depth relationships under both unirradiated and irradiated conditions. Moreover, effect of ion-irradiation on the mechanical behavior during the nano-indentation of single crystal SS304 is also examined to demonstrate that the proposed method is a powerful approach for nano-indentation modeling of ion-irradiated FCC single crystals using SGCP theory and the PSO algorithm.

An efficient hybrid TLBO-PSO-ANN for fast damage identification in steel beam structures using IGA

  • Khatir, S.;Khatir, T.;Boutchicha, D.;Le Thanh, C.;Tran-Ngoc, H.;Bui, T.Q.;Capozucca, R.;Abdel-Wahab, M.
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.605-617
    • /
    • 2020
  • The existence of damages in structures causes changes in the physical properties by reducing the modal parameters. In this paper, we develop a two-stages approach based on normalized Modal Strain Energy Damage Indicator (nMSEDI) for quick applications to predict the location of damage. A two-dimensional IsoGeometric Analysis (2D-IGA), Machine Learning Algorithm (MLA) and optimization techniques are combined to create a new tool. In the first stage, we introduce a modified damage identification technique based on frequencies using nMSEDI to locate the potential of damaged elements. In the second stage, after eliminating the healthy elements, the damage index values from nMSEDI are considered as input in the damage quantification algorithm. The hybrid of Teaching-Learning-Based Optimization (TLBO) with Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) are used along with nMSEDI. The objective of TLBO is to estimate the parameters of PSO-ANN to find a good training based on actual damage and estimated damage. The IGA model is updated using experimental results based on stiffness and mass matrix using the difference between calculated and measured frequencies as objective function. The feasibility and efficiency of nMSEDI-PSO-ANN after finding the best parameters by TLBO are demonstrated through the comparison with nMSEDI-IGA for different scenarios. The result of the analyses indicates that the proposed approach can be used to determine correctly the severity of damage in beam structures.

Generation of a High-Growth Influenza Vaccine Strain in MDCK Cells for Vaccine Preparedness

  • Kim, Eun-Ha;Kwon, Hyeok-Il;Park, Su-Jin;Kim, Young-Il;Si, Young-Jae;Lee, In-Won;Kim, Se mi;Kim, Soo-In;Ahn, Dong-Ho;Choi, Young-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.997-1006
    • /
    • 2018
  • As shown during the 2009 pandemic H1N1 (A(H1N1)pdm09) outbreak, egg-based influenza vaccine production technology is insufficient to meet global demands during an influenza pandemic. Therefore, there is a need to adapt cell culture-derived vaccine technology using suspended cell lines for more rapid and larger-scale vaccine production. In this study, we attempted to generate a high-growth influenza vaccine strain in MDCK cells using an A/Puerto/8/1934 (H1N1) vaccine seed strain. Following 48 serial passages with four rounds of virus plaque purification in MDCK cells, we were able to select several MDCK-adapted plaques that could grow over $10^8PFU/ml$. Genetic characterization revealed that these viruses mainly had amino acid substitutions in internal genes and exhibited higher polymerase activities. By using a series of Rg viruses, we demonstrated the essential residues of each gene and identified a set of high-growth strains in MDCK cells ($PB1_{D153N}$, $M1_{A137T}$, and $NS1_{N176S}$). In addition, we confirmed that in the context of the high-growth A/PR/8/34 backbone, A/California/7/2009 (H1N1), A/Perth/16/2009 (H3N2), and A/environment/Korea/deltaW150/2006 (H5N1) also showed significantly enhanced growth properties (more than $10^7PFU/ml$) in both attached- and suspended-MDCK cells compared with each representative virus and the original PR8 vaccine strain. Taken together, this study demonstrates the feasibility of a cell culture-derived approach to produce seed viruses for influenza vaccines that are cheap and can be grown promptly and vigorously as a substitute for egg-based vaccines. Thus, our results suggest that MDCK cell-based vaccine production is a feasible option for producing large-scale vaccines in case of pandemic outbreaks.

Foundation Analysis and Design Using CPT Results : Settlement Estimation of Shallow Foundation (CPT 결과를 이용한 기초해석 및 설계 : 얕은 기초의 침하량 산정)

  • 이준환;박동규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.5-14
    • /
    • 2004
  • The settlement of foundations under working load conditions is an important design consideration. Well-designed foundations induce stress-strain states in the soil that are neither in the linear elastic range nor in the range usually associated with perfect plasticity. Thus, in order to accurately predict working settlements, analyses that are more realistic than simple elastic analyses are required. The settlements of footings in sand are often estimated based on the results of in-situ tests, particularly the standard penetration test (SPT) and the cone penetration test (CPT). In this paper, we analyze the load-settlement response of vertically loaded footings placed in sands using both the finite element method with a non-linear stress-strain model and the conventional elastic approach. Based on these analyses, we propose a procedure for the estimation of footing settlement in sands based on CPT results.