• Title/Summary/Keyword: strain-based approach

Search Result 423, Processing Time 0.026 seconds

Reevaluation of failure criteria location and novel improvement of 1/4 PCCV high fidelity simulation model under material uncertainty quantifications

  • Bu-Seog Ju;Ho-Young Son
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3493-3505
    • /
    • 2023
  • Reactor containment buildings serve as the last barrier to prevent radioactive leakage due to accidents and their safety is crucial in overpressurization conditions. Thus, the Regulatory Guide (RG) 1.216 has mentioned the global strain as one of failure criteria in the free-field for cylindrical prestressed concrete containment vessels (PCCV) subject to internal pressure. However, there is a limit that RG 1.216 shows the free-field without the specific locations of failure criteria and also the global strain corresponding to only azimuth 135° has been mentioned in NUREG/CR-6685, regardless of the elevations of the structure. Therefore, in order to reevaluate the failure criteria of the 1:4 scaled PCCV, the high fidelity simulation model based on the experimental test was significantly validated in this study, and it was interesting to find that the experimental and numerical result was very close to each other. In addition, for the consideration of the material uncertainties, the Latin hypercube method was used as a statistical approach. Consequently, it was revealed that the radial displacements of various azimuth area such as 120°, 135°, 150°, 180° and 210° at elevations 4680 mm and 6,200 mm can represent as the global deformation at the free-field, obtained from the statistical approach.

Multi-Scale Heterogeneous Fracture Modeling of Asphalt Mixture Using Microfabric Distinct Element Approach

  • Kim Hyun-Wook;Buttler William G.
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.139-152
    • /
    • 2006
  • Many experimental and numerical approaches have been developed to evaluate paving materials and to predict pavement response and distress. Micromechanical simulation modeling is a technology that can reduce the number of physical tests required in material formulation and design and that can provide more details, e.g., the internal stress and strain state, and energy evolution and dissipation in simulated specimens with realistic microstructural features. A clustered distinct element modeling (DEM) approach was implemented In the two-dimensional particle flow software package (PFC-2D) to study the complex behavior observed in asphalt mixture fracturing. The relationship between continuous and discontinuous material properties was defined based on the potential energy approach. The theoretical relationship was validated with the uniform axial compression and cantilever beam model using two-dimensional plane strain and plane stress models. A bilinear cohesive displacement-softening model was implemented as an intrinsic interface and applied for both homogeneous and heterogeneous fracture modeling in order to simulate behavior in the fracture process zone and to simulate crack propagation. A disk-shaped compact tension test (DC(T)) with heterogeneous microstructure was simulated and compared with the experimental fracture test results to study Mode I fracture. The realistic arbitrary crack propagation including crack deflection, microcracking, crack face sliding, crack branching, and crack tip blunting could be represented in the fracture models. This micromechanical modeling approach represents the early developmental stages towards a 'virtual asphalt laboratory,' where simulations of laboratory tests and eventually field response and distress predictions can be made to enhance our understanding of pavement distress mechanisms, such its thermal fracture, reflective cracking, and fatigue crack growth.

  • PDF

A Data-driven Multiscale Analysis for Hyperelastic Composite Materials Based on the Mean-field Homogenization Method (초탄성 복합재의 평균장 균질화 데이터 기반 멀티스케일 해석)

  • Suhan Kim;Wonjoo Lee;Hyunseong Shin
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.329-334
    • /
    • 2023
  • The classical multiscale finite element (FE2 ) method involves iterative calculations of micro-boundary value problems for representative volume elements at every integration point in macro scale, making it a computationally time and data storage space. To overcome this, we developed the data-driven multiscale analysis method based on the mean-field homogenization (MFH). Data-driven computational mechanics (DDCM) analysis is a model-free approach that directly utilizes strain-stress datasets. For performing multiscale analysis, we efficiently construct a strain-stress database for the microstructure of composite materials using mean-field homogenization and conduct data-driven computational mechanics simulations based on this database. In this paper, we apply the developed multiscale analysis framework to an example, confirming the results of data-driven computational mechanics simulations considering the microstructure of a hyperelastic composite material. Therefore, the application of data-driven computational mechanics approach in multiscale analysis can be applied to various materials and structures, opening up new possibilities for multiscale analysis research and applications.

Coupled Thermo-Viscoplastic Three Dimensional Finite Element Anaysis of Compression Molding of Sheet Molding Compound (열유동을 고려한 SMC 압축성형공정의 3차원 유한요소 해석)

  • Kim, Soo-Young;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.488-499
    • /
    • 1996
  • SMC(Sheet molding compound) is a thermosetting material reinforced with chopped fiberglass. The compression molding of SMC was analyzed based on a rigid thermo-viscoplastic approach using a three dimensional finite element program coupled with temperatures. Only the temperature analysis part was tested in this paper by solving one-dimensional heat transfer problem and comparing with the exact solutions available in the literature. Based on this comparison the program was proved to be valid and was further applied in solving compression molding of SMC between flat dies. To investigate the usefulness of a rigid thermo-viscoplastic approach in the compression molding analysis of SMC charge, compression of rectangular shaped SMC charge at plane strain and three dimensionalde formation condition was analyzed under the same condition as given in the literature. From this comparison it was found out that the rigid thermo-viscoplastic approach was useful in analyzing SMC compression molding between flat dies.

Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach

  • Rajabi, Javad;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.23 no.5
    • /
    • pp.361-376
    • /
    • 2019
  • In this research, bending analysis of a micro sandwich skew plate with isotropic core and piezoelectric composite face sheets reinforced by carbon nanotube on the elastic foundations are studied. The classical plate theory (CPT) are used to model micro sandwich skew plate and to apply size dependent effects based on modified strain gradient theory. Eshelby-Mori-Tanaka approach is considered for the effective mechanical properties of the nanocomposite face sheets. The governing equations of equilibrium are derived using minimum principle of total potential energy and then solved by extended Kantorovich method (EKM). The effects of width to thickness ratio and length to width of the sandwich plate, core-to-face sheet thickness ratio, the material length scale parameters, volume fraction of CNT, the angle of skew plate, different boundary conditions and types of cores on the deflection of micro sandwich skew plate are investigated. One of the most important results is the reduction of the deflection by increasing the angle of the micro sandwich skew plate and decreasing the deflection by decreasing the thickness of the structural core. The results of this research can be used in modern construction in the form of reinforced slabs or stiffened plates and also used in construction of bridges, the wing of airplane.

The Development of Vibration Exciter Using Strain Displacement Estimator for Flow Resonance (스트레인 게이지 변위 추정기를 사용한 유동공진 가진기 개발)

  • Choi, Jae-hyuck;Nam, Yoon-su
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.125-132
    • /
    • 2001
  • Heat dissipation technology using flow resonant phenomenon is a kind of new concept in heat transfer area. A vibration exciter is needed to generate air turbulence which has the natural shedding frequency of heat system. A mechanical vibrating device for the air flow oscillation is introduced, which is driven by a moving coil actuator. An analytical dynamic model for this mechanical vibration exciter is presented and its' validity is verified by the comparison with experimental data. Values of some unknown system parameters in the analytic model are estimated through the system identification approach. Based on this mathematical model, the vibration exciter using strain displacement estimator is developed. And in the experiment, the feedback control is used. During the experimental verification phase, it turns out the high modal resonant characteristics of vibrating plate are the major barrier against obtaining a high bandwidth vibration exciter.

  • PDF

Experimental studies on impact damage location in composite aerospace structures using genetic algorithms and neural networks

  • Mahzan, Shahruddin;Staszewski, Wieslaw J.;Worden, Keith
    • Smart Structures and Systems
    • /
    • v.6 no.2
    • /
    • pp.147-165
    • /
    • 2010
  • Impact damage detection in composite structures has gained a considerable interest in many engineering areas. The capability to detect damage at the early stages reduces any risk of catastrophic failure. This paper compares two advanced signal processing methods for impact location in composite aircraft structures. The first method is based on a modified triangulation procedure and Genetic Algorithms whereas the second technique applies Artificial Neural Networks. A series of impacts is performed experimentally on a composite aircraft wing-box structure instrumented with low-profile, bonded piezoceramic sensors. The strain data are used for learning in the Neural Network approach. The triangulation procedure utilises the same data to establish impact velocities for various angles of strain wave propagation. The study demonstrates that both approaches are capable of good impact location estimates in this complex structure.

A Berkovich Indentation Technique Based on 3D FEA solutions for Material Property Evaluation (3차원 유한요소해에 기초한 Berkovich 압입 물성평가법)

  • Kim, Min-Soo;Hyun, Hong-Chul;Lee, Kyoung-Yoon;Lee, Hyung-Yil
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1-6
    • /
    • 2008
  • Due to the self-similarity of Berkovich and conical indenters, different materials may show the same loaddepth curve for single indentation. In this study, we first compare the load-depth characteristics of conical and Berkovich indenters via finite element method. We also analyze the variation of load-depth curves with angle of Berkovich indenter, indentation parameters, and material properties. With numerical regressions of obtained data, we then propose dual-Berkovich indentation formulae for material property evaluation. The proposed approach provides the values of elastic modulus, yield strength and strain-hardening exponent and corresponding stress-strain curve with an average error of less than 3%. The method is valid for any elastic indenters made of tungsten carbide and diamond for instance.

  • PDF

A study of instrumented indentation by finite element analysis

  • Le Minh-quy;Kim Seock-sam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.248-258
    • /
    • 2003
  • Finite element computations were carried out to study the indentation by rigid cone with half-angle of $70.3^{\circ}$ for 72 different combinations of elasto-plastic properties that cover the wide range of mechanical parameters of common engineering solid materials. The dimensional analysis and representative strain concept were used in the analysis. It was shown that for the same representative strain value, the loading curvature C can be formulated under two different forms, which are based on two alternative dimensionless functions. The present study's one is simpler than the other previously found by other authors using the similar approach. For a wide range of material's parameters, the hardness-modulus ratio should be a parabolic function of ${\sigma}E$, rather than a power law function earlier proposed.

  • PDF

Pobabilistic Design of Asphalt Pavement Surface Courae (아스팔트 鋪裝道路의 確率論的 表層設計)

  • Kim, Gwang-U;Yeon, Gyu-Seok
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.1
    • /
    • pp.66-77
    • /
    • 1992
  • A prototype probabilistic approach to thickness design for asphalt pavement surface course was developed using first-order second moment probability model. The tensile strain (load effect) developing at the bottom of surface layer due to the wheel load and the critical strain (resistance) of asphalt concrete were used as random variables for pavement reliability analysis. Based on the parameters for load effect and resistance data collected from reference and field, simulated data were generated by Monte Carlo method for reliability evaluation of the pavement for a typical rural highway. Thickness of pavement surface course was defined in terms of target reliability of the pavement, growth factor of traffic, design life of pavement and resistance of the asphalt concrete to be placed on the pavement. According to these rationales, prototype thickness design chrats were sugested through example studies. From these, similar design charts can be developed for many pavements if appropriate data and target reliability are determined.

  • PDF