Acknowledgement
This work was supported by the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (No. 2106034).
References
- R.A. Dameron, L. Zhang, Y.R. Rashid, M.S. Vargas, Pretest Analysis of a 1:4-scale Prestressed Concrete Containment Vessel Model, Technical Report No. NUREG/CR-6685, SAND2000-2093, U.S. Nuclear Regulatory Commission, Washington, DC, USA, 2000.
- M.F. Hessheimer, E.W. Klamerus, L.D. Lambert, G.S. Rightley, R.A. Dameron, Overpressurization Test of a 1:4-scale Prestressed Concrete Containment Vessel Model, Technical Report No. NUREG/CR-6810, SAND2003-0840P, U.S. Nuclear Regulatory Commission, Washington, DC, USA, 2003.
- R.A. Dameron, B.E. Hanse, D.R. Parker, Y.R. Rashid, Posttest Analysis of the NUPEC/NRC 1:4 Scale Prestressed Concrete Containment Vessel Model, Technical Report No. NUREG/CR-6809, SAND2003-0839P, U.S. Nuclear Regulatory Commission, Washington, DC, USA, 2003.
- Regulatory Guide 1.216, Containment Structural Integrity Evaluation for Internal Pressure Loadings above Design Basis Pressure, U.S. Nuclear Regulatory Commission, Rockville, MD, USA.
- S. Alhanaee, Y. Yi, abd A. Schiffer, Ultimate pressure capacity of nuclear reactor containment building under unaged and aged conditions, Nucl. Eng. Des. 335 (2018) 128-139. https://doi.org/10.1016/j.nucengdes.2018.05.017
- I. Tavakkoli, M.R. Kianoush, X. Han, Finite element modelling of a nuclear containment structure subjected to high internal pressure, Int. J. Pres. Ves. Pip. 153 (2017) 59-69. https://doi.org/10.1016/j.ijpvp.2017.05.004
- H.T. Hu, Y.H. Lin, Ultimate analysis of PWR prestressed concrete containment subjected to internal pressure, Int. J. Pres. Ves. Pip. 83 (3) (2006) 161-167. https://doi.org/10.1016/j.ijpvp.2006.02.030
- H.T. Hu, J.X. Lin, Ultimate analysis of PWR prestressed concrete containment under long-term prestressing loss, Ann. Nucl. Energy 87 (2016) 500-510. https://doi.org/10.1016/j.anucene.2015.10.005
- S. Jin, Z. Li, T. Lan, J. Gong, Fragility analysis of prestressed concrete containment under severe accident condition, Ann. Nucl. Energy 131 (2019) 242-256. https://doi.org/10.1016/j.anucene.2019.03.034
- Z. Li, J. Guo, S. Jin, P. Zhang, J. Gong, Fragility analysis and probabilistic safety evaluation of the nuclear containment structure under different prestressing loss conditions, Ann. Nucl. Energy 167 (2022), 108862.
- Y. P. Liang, X. Ren, and D. C. Feng, Probabilistic safety assessment of nuclear containment vessel under internal pressure considering spatial variability of material properties, Int. J. Pres. Ves. Pip., 200, pp. 104813.
- X. Ren, Y.P. Liang, D.C. Feng, Fragility analysis of a prestressed concrete containment vessel subjected to internal pressure via the probability density evolution method, Nucl. Eng. Des. 390 (2022), 111709.
- ABAQUS, ABAQUS/CAE Ver, ABAQUS, Pawtucket, RI, USA, 2021, p. 2021.
- ABAQUS, ABAQUS/CAE User's Manual, ABAQUS: Pawtucket, RI, USA, 2021.
- E. Hognestad, A Study on Combined Bending and Axial Load in Reinforced Concrete Members, vol. 399, University of Illinois at Urbana Campaign, 1951. Bulletin Series No.
- H.T. Nguyen, S.E. Kim, Finite element modeling of push-out tests for large stud shear connectors, J. Constr. Steel Res. 65 (10) (2009) 1909-1920. https://doi.org/10.1016/j.jcsr.2009.06.010
- J. Izumo, H. Shima, H. Okamura, Analy. model RC panel elem.subjected to in-plane forces 12 (1989) 155-181.
- JSCE, JSCE guideline for concrete No. 16, Standard Specifications for Concrete Structures-Materials and Constructions, Concrete Committee of Japan Society of Civil Engineers, Japan.
- H.P. Lee, Y.S. Jeon, I.K. Choi, J.M. Seo, A Study on the Nonlinear Analysis of a 1/4 Scale Prestressed Concrete Containment Vessel Model, Korea Atomic Energy Research Institute, Daejeon, Korea, 2004. KAERI/TR-2740/2004.
- S. Syed, A. Gupta, Seismic fragility of RC shear walls in nuclear power plant part 1: characterization of uncertainty in concrete constitutive model, Nucl. Eng. Des. 295 (15) (2015) 576-586. https://doi.org/10.1016/j.nucengdes.2015.09.037
- L. Chu, E.S. De Cursi, A. El Hami, M. Eid, Application of Latin hypercube sampling based kriging surrogate models in reliability assessment, Sci. J. Appl. Math. Stat. 3 (6) (2015) 263-274. https://doi.org/10.11648/j.sjams.20150306.16
- A. Olsson, G. Sandberg, Latin hypercube sampling for stochastic finite element analysis, J. Eng. Mech. 128 (1) (2002) 121-125. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:1(121)
- I.H. Yang, Uncertainty analysis of concrete structures using modified Latin hypercube sampling method, Inter.J.Concrete Struc.Mater. 18 (2E) (2006) 89-95. https://doi.org/10.4334/IJCSM.2006.18.2E.089
- M.D. McKay, R.J. Beckman, W.J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics 21 (2) (1979) 55-61. https://doi.org/10.1080/00401706.1979.10489722
- M. Stein, Large sample properties of simulations using Latin hypercube sampling, Technomatrics 29 (2) (1987) 143-151. https://doi.org/10.1080/00401706.1987.10488205