• 제목/요약/키워드: strain estimation

검색결과 432건 처리시간 0.022초

주조 스테인리스강 CF8M의 43$0^{\circ}C$ 열화거동에 관한 연구 (II) -저사이클 피로특성 평가- (A Study on the 43$0^{\circ}C$ Degradation Behavior of Cast Stainless Steel(CF8M)(II)-Evaluation of Low Cycle Fatigue Characteristics-)

  • 권재도;우승완;박중철;이용선;박윤원
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2183-2190
    • /
    • 2000
  • A thermal aging is observed in a primary reactor cooling system(RCS) made of a casting stainless steel when the RCS is exposed for long period at the reactor operating temperature, 290~3300C An investigation of effects of thermal aging on a low cycle fatigue characteristics included a stress variations caused by a reactor operation and trip, is required. The purpose of the present investigation is to find an effect of a thermal aging of the CF8M on a low cycle fatigue life. The specimen of CF8M are prepared by an artificially accelerated aging technique holding 300 and 1800hr at 4300C respectively. The low cycle fatigue tests for the virgin and two aged specimens are performed at the room temperature for various strain amplitudes($\varepsilon$ta), 0.3, 0.5, 0.8, 1.0, 1.2 and 1.5% strain. Through the experiment, it is found that the fatigue life is rapidly reduced with an creasing of the aging time. The experimental fatigue life estimation formulas between the virgin and two aged specimen are obtained and are proposed to a analysis purpose.

굽힘피로 하중을 받는 배관의 피로균열 발생수명 예측 (Crack Initiation Life Analysis in Notched Pipe Under Cyclic Bending Loads)

  • 곽상록;이준성;김영진;박윤원
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1528-1534
    • /
    • 2001
  • In order to improve Leak-Be(ore-Break methodology, more precisely the crack growth evaluation, a round robin analysis was proposed by the CEA Saclay. The aim of this analysis was to evaluate the crack initiation life, penetration life and shape of through wall crack under cyclic bending loads. The proposed round robin analysis is composed of three main topic; fatigue crack initiation, crack propagation and crack penetration. This paper deals with the first topic, crack initiation in a notched pipe under four point bending. Both elastic-plastic finite element analysis and Neuber's rule were used to estimate the crack initiation life and the finite element models were verified by mesh-refinement, stress distribution and global deflection. In elastic-plastic finite element analysis, crack initiation life was determined by strain amplitude at the notch tip and strain-life curve of the material. In the analytical method, Neuber's rule with the consideration of load history and mean stress effect, was used for the life estimation. The effect of notch tip radius, strain range, cyclic hardening rule were examined in this study. When these results were compared with the experimental ones, the global deformation was a good agreement but the crack initiation cycle was higher than the experimental result.

Response of steel pipeline crossing strike-slip fault in clayey soils by nonlinear analysis method

  • Hadi Khanbabazadeh;Ahmet Can Mert
    • Geomechanics and Engineering
    • /
    • 제34권4호
    • /
    • pp.409-424
    • /
    • 2023
  • Response of the pipeline crossing fault is considered as the large strain problem. Proper estimation of the pipeline response plays important role in mitigation studies. In this study, an advanced continuum modeling including material non-linearity in large strain deformations, hardening/softening soil behavior and soil-pipeline interaction is applied. Through the application of a fully nonlinear analysis based on an explicit finite difference method, the mechanics of the pipeline behavior and its interaction with soil under large strains is presented in more detail. To make the results useful in oil and gas engineering works, a continuous pipeline of two steel grades buried in two clayey soil types with four different crossing angles of 30°, 45°, 70° and 90° with respect to the pipeline axis have been considered. The results are presented as the fault movement corresponding to different damage limit states. It was seen that the maximum affected pipeline length is about 20 meters for the studied conditions. Also, the affected length around the fault cutting plane is asymmetric with about 35% and 65% at the fault moving and stationary block, respectively. Local buckling is the dominant damage state for greater crossing angle of 90° with the fault displacement varying from 0.4 m to 0.55 m. While the tensile strain limit is the main damage state at the crossing angles of 70° and 45°, the cross-sectional flattening limit becomes the main damage state at the smaller 30° crossing angles. Compared to the stiff clayey soil, the fault movement resulting 3% tensile strain limit reach up to 40% in soft clayey soil. Also, it was seen that the effect of the pipeline internal pressure reaches up to about 40% compared to non-pressurized condition for some cases.

Investigation of three-dimensional deformation mechanisms of existing tunnels due to nearby basement excavation in soft clay

  • Wanchun Chen;Lixian Tang;Haijun Zhao;Qian Yin;Shuang Dong;Jie Liu;Zhaohan Zhu;Xiaodong Ni
    • Geomechanics and Engineering
    • /
    • 제34권2호
    • /
    • pp.115-124
    • /
    • 2023
  • By conducting three-dimensional simulation with consideration of small-strain characteristics of soil stiffness, the effects of excavation geometry and tunnel cover to diameter ratio on deformation mechanisms of an existing tunnel located either at a side of basement or directly underneath the basement were systematically studied. Field measurements were used to verify the numerical model and model parameters. For basement excavated at a side of an existing tunnel, the maximum settlement and horizontal displacement of the tunnel are always observed at the tunnel springline closer to basement and tunnel crown, respectively, regardless of basement geometry. By increasing basement length and width by five times, the maximum movements of tunnel located at the side of basement and directly underneath the basement increase by 450% and 186%, respectively. Obviously, tunnel movements are more sensitive to basement length rather than basement width. For basement excavated at a side of an existing tunnel, tunnel movements at basement centerline become stable when basement length reaches 10 He (i.e., final excavation depth). Moreover, tunnel heaves due to overlying basement excavation become stable when the normalized basement length (L/He) is larger than 8.0. As tunnel cover to diameter ratio varies from 2.5 to 3.0, the maximum heave and tensile strain of tunnel due to overlying basement excavation decrease by up to 41.0% and 44.5%, respectively. If basement length is less than 8 He, the assumption of plane strain condition of basement-tunnel interaction grossly overestimates tunnel movements, and ignores tensile strain of tunnel along its longitudinal direction. Thus, three-dimensional numerical analyses are required to obtain a reasonable estimation of tunnel responses due to adjacent and overlying basement excavations in clay.

ESTIMATION OF DUCTILE FRACTURE BEHAVIOR INCORPORATING MATERIAL ANISOTROPY

  • Choi, Shin-Beom;Lee, Dock-Jin;Jeong, Jae-Uk;Chang, Yoon-Suk;Kim, Min-Chul;Lee, Bong-Sang
    • Nuclear Engineering and Technology
    • /
    • 제44권7호
    • /
    • pp.791-798
    • /
    • 2012
  • Since standardized fracture test specimens cannot be easily extracted from in-service components, several alternative fracture toughness test methods have been proposed to characterize the deformation and fracture resistance of materials. One of the more promising alternatives is the local approach employing the SP(Small Punch) testing technique. However, this process has several limitations such as a lack of anisotropic yield potential and tediousness in the damage parameter calibration process. The present paper investigates estimation of ductile fracture resistance(J-R) curve by FE(Finite Element) analyses using an anisotropic damage model and enhanced calibration procedure. In this context, specific tensile tests to quantify plastic strain ratios were carried out and SP test data were obtained from the previous research. Also, damage parameters constituting the Gurson-Tvergaard-Needleman model in conjunction with Hill's 48 yield criterion were calibrated for a typical nuclear reactor material through a genetic algorithm. Finally, the J-R curve of a standard compact tension specimen was predicted by further detailed FE analyses employing the calibrated damage parameters. It showed a lower fracture resistance of the specimen material than that based on the isotropic yield criterion. Therefore, a more realistic J-R curve of a reactor material can be obtained effectively from the proposed methodology by taking into account a reduced load-carrying capacity due to anisotropy.

비드형상 및 복수 표면균열의 확률적 특성을 고려한 필릿 용접부 피로수명 평가 (Fatigue Life Estimation of Fillet Welded Joints Considering Statistical Characteristics of Weld Toe's Shape and Multiple Collinear Surface Cracks)

  • 한승호;한정우
    • Journal of Welding and Joining
    • /
    • 제23권3호
    • /
    • pp.68-75
    • /
    • 2005
  • The fatigue life of welded joints is associated with crack initiation and propagation life. Theses cannot be easily separated, since the definition of crack initiation is vague due to the initiation of multiple cracks that are distributed randomly along the weld toes. In this paper a method involving a notch strain and fracture mechanical approach, which considers the characteristics of welded joints, e.g. welding residual stress and statistical characteristics of multiple cracks, is proposed, in an attempt to reasonably estimate these fatigue lives. The fatigue crack initiation life was evaluated statistically, e.g. the probability of failure occurrence in 2.3, 50 and $97.7\%$, in which the cyclic response of the local stress/strain hi the vicinity of the weld toes and notch factors derived by the irregular shape of the weld bead are taken into account. The fatigue crack propagation life was simulated by using Monte-Carlo method in consideration of the Ad-factor and the mechanical behavior of mutual interaction/coalescence between two adjacent cracks. The estimated total fatigue life, $(N_T)_{P50\%}$, as a sum of crack initiation and propagation life under the probability of failure occurrence in $50\%$ showed a good agreement with the experimental results. The developed technique for fatigue lift estimation enables to provide a quantitative proportion of crack initiation and propagation life in the total fatigue life due to the nominal stress range, ${\Delta}S$.

CPT 결과를 이용한 기초해석 및 설계 : 얕은 기초의 침하량 산정 (Foundation Analysis and Design Using CPT Results : Settlement Estimation of Shallow Foundation)

  • 이준환;박동규
    • 한국지반공학회논문집
    • /
    • 제20권8호
    • /
    • pp.5-14
    • /
    • 2004
  • 얕은기초의 설계에 있어 작용하중에 의한 침하량 산정은 기초의 지지력 산정과 함께 매우 중요한 고려사항이다. 상부구조물에 의한 설계하중이 지표면의 기초지반에 직접 작용하는 얕은기초의 경우, 기초지반의 거동은 일반적으로 완전 선형탕성도 아니며, 파괴에 도달한 소성상태도 아닌 비선형 응력-변형률의 거동을 보이게 된다. 이러한 지반의 비선형성은 침하량 산정에 있어 매우 중요한 요소로 간주될 수 있으나, 실제 설계에 있어서는 대표탄성계수의 적용에 의한 간편법이 보편적으로 적용되고 있다. 일반적으로 사질토지반에 놓인 얕은기초 침하량 산정은 표준관입시험(SPT)나 콘관입시헙(CPT) 등의 현장시험 결과를 토대로 이루어진다. 본 연구에서는 비선형 유한요소해석에 의한 얕은기초 하중-침하량 분석을 수행하였으며, 기존의 탄성론에 근거한 침하량 산정법과의 비교분석 또한 수행하였다. 이와 같은 해석을 통하여 콘관입시헙(CPT) 결과에 근거한 새로운 얕은기초 침하량 산정법 및 얕은기초 설계법을 제안하였다.

초연약 준설 매립지반의 비선형 유한변형 압밀해석기법 -Part I: 해석 물성치 평가 (Analysis Method for Non-Linear Finite Strain Consolidation for Soft Dredged Soil Deposit -Part I: Parameter Estimation for Analysis)

  • 곽태훈;이철호;임지희;안용훈;최항석
    • 한국지반공학회논문집
    • /
    • 제27권9호
    • /
    • pp.13-24
    • /
    • 2011
  • Terzaghi의 1차원 압밀이론은 준설 매립지반과 같이 고함수비, 고압축성을 갖는 점토지반의 압밀해석에는 적합하지 않다. 준설 매립지반의 자중압밀과 재하하중에 의한 추가압밀을 적절히 고려하기 위해서는 비선형, 유한변형 압밀이론을 도입해야 한다. 준설 매립지반의 비선형 유한변형 압밀해석을 수행하기 위해서는 침강과정이 종료되고 자중압밀이 시작되는 시점의 간극비인 초기간극비($e_{00}$)와 비선형성을 갖는 준설토의 간극비-유효응력 관계와 간극비-투수계수의 관계 규명이 매우 중요하다. 본 연구에서는 실내시험을 통해 비선형 유한변형 압밀해석에 필요한 인자를 산정하는 방법을 제안하였다. 또한, 본 연구에서 제안한 방법을 적용하여 인천지역 준설토와 카올리나이트의 압밀 물성치를 평가하였고, 이를 동반논문에서 다룰 비선형 유한변형 압밀해석에 적용하였다.

배관 변형 및 처짐 감시를 위한 광섬유 센서의 활용 (Application of Fiber Optic Sensors for Monitoring Deflection and Deformation of a Pipeline)

  • 이진혁;김대현
    • 비파괴검사학회지
    • /
    • 제36권6호
    • /
    • pp.460-465
    • /
    • 2016
  • 배관 구조물은 긴 길이를 가지며, 일정한 거리에 위치한 고정부에 설치되거나, 지중에 매설된다. 따라서 자중 또는 지반의 움직임으로 변형과 처짐이 발생하기 쉽다. 이러한 배관의 건전성 평가에는 형상 감시 기법이 매우 유용할 수 있다. 광섬유 브래그 격자 센서 (fiber Bragg grating, FBG)는 다중화의 장점이 있어 배관과 같이 긴 길이를 가지는 구조물의 여러 지점에서 변형률 측정에 매우 유용하다. 본 연구에서는 배관의 건전성 평가를 위하여 변형률 기반의 형상추정기법을 제안하였다. 제안된 기법의 유용성을 확인하기 위하여 실험을 통한 검증을 수행하였다. 실험 결과 제안된 FBG를 이용한 형상추정기법이 시험편의 변형에 따라 유사한 형상을 표현할 수 있음을 확인하였다. 또한, 형상추정기법을 통해 도출된 처짐량이 실제 배관에 가해진 처짐과 동일하게 계산됨을 확인하였다.

멀티 텐던 앵커헤드의 변형을 이용한 텐던의 초기 긴장력 추정 (Estimation of Initial Tensile Force Acting on Tendon using the Deformation of a Multi-tendon Anchor Head)

  • 박장호;조정래;박재균
    • 한국전산구조공학회논문집
    • /
    • 제27권6호
    • /
    • pp.581-588
    • /
    • 2014
  • 최근에 널리 사용되고 있는 PSC 교량은 콘크리트의 처짐과 균열 등의 취약점을 긴장재와 강봉을 사용하여 보완하고 성능을 향상시킨 구조물이다. 따라서 PSC 교량에서 긴장재에 작용하는 하중을 적절하게 산정하는 것은 구조물의 안전하고 효율적인 유지, 보수를 위하여 중요하다. 이 논문은 텐던에 작용하는 하중과 앵커헤드 변형과의 관계를 확인하기 위하여 멀티 텐던 앵커헤드의 변형률에 대한 수치해석을 수행하고 분석한 것이다. 정확한 해석을 위하여 재료의 물성, 접촉 문제의 비선형성 등을 모두 고려하였으며 해석은 범용 유한요소 프로그램인 Abaqus를 사용하여 수행되었다. 수치해석 결과로부터 텐던에 작용하는 하중을 추정하는 데에는 hoop 방향 변형률이 가장 유용하며, 마찰 계수, 경계조건, 그리고 배치 등에 따라 영향을 받는 것을 확인하였다.