DOI QR코드

DOI QR Code

Estimation of Initial Tensile Force Acting on Tendon using the Deformation of a Multi-tendon Anchor Head

멀티 텐던 앵커헤드의 변형을 이용한 텐던의 초기 긴장력 추정

  • Park, Jang Ho (Department of Civil System Engineering, Ajou University) ;
  • Cho, Jeong-Rae (SOC Research Institute, Korea Institute of Construction Technology) ;
  • Park, Jaegyun (Department of Civil & Environmental Engineering, Dankook University)
  • 박장호 (아주대학교 건설시스템공학과) ;
  • 조정래 (한국건설기술연구원 SOC성능연구소) ;
  • 박재균 (단국대학교 토목환경공학과)
  • Received : 2014.10.01
  • Accepted : 2014.10.10
  • Published : 2014.12.31

Abstract

The PSC bridges have recently been widely used in Korea. The PSC bridge is a structure whose performance is improved through the use of tendons and steel bars in deflection and cracking characteristics of the concrete. Therefore, measurement or estimation of the load acting on tendon is important in order to maintain the PSC bridges efficiently and safely. This paper deals with a numerical study on the deformation of a multi-tendon anchor head in order to verify the relationship between the load acting on tendon and the deformation of anchor head. All kinematics, material properties and contact nonlinearity are included for the precise analysis and numerical studies are performed by Abaqus. From the numerical results, it is verified that the hoop strain is most useful in the estimation of the load acting on tendon and strains are affected by various parameters such as friction coefficient, boundary conditions, and arrangement.

최근에 널리 사용되고 있는 PSC 교량은 콘크리트의 처짐과 균열 등의 취약점을 긴장재와 강봉을 사용하여 보완하고 성능을 향상시킨 구조물이다. 따라서 PSC 교량에서 긴장재에 작용하는 하중을 적절하게 산정하는 것은 구조물의 안전하고 효율적인 유지, 보수를 위하여 중요하다. 이 논문은 텐던에 작용하는 하중과 앵커헤드 변형과의 관계를 확인하기 위하여 멀티 텐던 앵커헤드의 변형률에 대한 수치해석을 수행하고 분석한 것이다. 정확한 해석을 위하여 재료의 물성, 접촉 문제의 비선형성 등을 모두 고려하였으며 해석은 범용 유한요소 프로그램인 Abaqus를 사용하여 수행되었다. 수치해석 결과로부터 텐던에 작용하는 하중을 추정하는 데에는 hoop 방향 변형률이 가장 유용하며, 마찰 계수, 경계조건, 그리고 배치 등에 따라 영향을 받는 것을 확인하였다.

Keywords

References

  1. Al-Mayah, A., Soudki, K., Plumtree, A. (2007) Novel Anchor System for CFRP Rod : Finiteelement and Mathematical Models, J. Compos. Constr., 11(5), pp.469-476. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:5(469)
  2. Bastien, J., Marceau, D., Fafard, M., Ganz, H. R. (2007) Use of FEA for Design of Posttensioning Anchor Head, J. Bridge Eng., 12, pp.194-204. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:2(194)
  3. European Organisation for Technical Assessment (EOTA) (2002) Guideline for European Technical Approval of Post-Tensioning Kits for Prestressing of Structures, Brussels.
  4. Marceau, D., Bastien, J., Fafard, M. (2001) Experimental and Numerical Studies of Mono-strand Anchorage, Struct. Eng. & Mech., 12(2), pp.119-134. https://doi.org/10.12989/sem.2001.12.2.119
  5. Noh, M.H., Seong, T.R., Kim, J.K. (2012) Nonlinear Analysis of Anchor Head for High Strength Steel Strand, J. Comput. Struct. Eng., Inst. Korea, 25(2), pp.163-173. https://doi.org/10.7734/COSEIK.2012.25.2.163
  6. Park, J.H., Yang, H.J., Cho, J.R. (2014) Numerical Analysis for Deformation of a Mono Tendon Anchor Head, J. Korean Soc. Saf., 29(1), pp.25-30. https://doi.org/10.14346/JKOSOS.2014.29.1.025
  7. Post-Tensioning Institute (PTI) (1998) Acceptance Standards for Post-Tensioning Systems, Post-Tensioning Institute, Pheonix.
  8. Precast/Prestressed Concrete Institute (PCI) (2011) Bridge Design Manual, 3rd edition.
  9. Seo, J.W., Jeong, W., Cho, E., Yoo, H. (2010) Parametric Analysis to Determine Optimum Geometries of PPWS Sockets in Cable-suspension Bridges, Proc. Steel Struct., pp.35-36.
  10. SIMULIA (2008) Getting Started with Abaqus, Dassult Systems.

Cited by

  1. Ultimate Strength of Anchorage Zone according to Geometric Parameters of Post-Tensioning Anchorage using a Finite Element Method vol.28, pp.3, 2015, https://doi.org/10.7734/COSEIK.2015.28.3.317