• Title/Summary/Keyword: strain estimation

Search Result 432, Processing Time 0.03 seconds

An Accurate Analysis for Sandwich Steel Beams with Graded Corrugated Core Under Dynamic Impulse

  • Rokaya, Asmita;Kim, Jeongho
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1541-1559
    • /
    • 2018
  • This paper addresses the dynamic loading characteristics of the shock tube onto sandwich steel beams as an efficient and accurate alternative to time consuming and complicated fluid structure interaction using finite element modeling. The corrugated sandwich steel beam consists of top and bottom flat substrates of steel 1018 and corrugated cores of steel 1008. The corrugated core layers are arranged with non-uniform thicknesses thus making sandwich beam graded. This sandwich beam is analogous to a steel beam with web and flanges. Substrates correspond to flanges and cores to web. The stress-strain relations of steel 1018 at high strain rates are measured using the split-Hopkinson pressure. Both carbon steels are assumed to follow bilinear strain hardening and strain rate-dependence. The present finite element modeling procedure with an improved dynamic impulse loading assumption is validated with a set of shock tube experiments, and it provides excellent correlation based on Russell error estimation with the test results. Four corrugated graded steel core arrangements are taken into account for core design parameters in order to maximize mitigation of blast load effects onto the structure. In addition, numerical study of four corrugated steel core placed in a reverse order is done using the validated finite element model. The dynamic behavior of the reversed steel core arrangement is compared with the normal core arrangement for deflections, contact force between support and specimen and plastic energy absorption.

Real-Time Implementation of Medical Ultrasound Strain Imaging System (의료용 초음파 스트레인 영상 시스템의 실시간 구현)

  • Jeong, Mok-Kun;Kwon, Sung-Jae;Bae, Moo-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.101-111
    • /
    • 2008
  • Strain imaging in a medical ultrasound imaging system can differentiate the cancer or tumor in a lesion that is stiffer than the surrounding tissue. In this paper, a strain imaging technique using quasistatic compression is implemented that estimates the displacement between pre- and postcompression ultrasound echoes and obtains strain by differentiating it in the spatial direction. Displacements are computed from the phase difference of complex baseband signals obtained using their autocorrelation, and errors associated with converting the phase difference into time or distance are compensated for by taking into the center frequency variation. Also, to reduce the effect of operator's hand motion, the displacements of all scanlines are normalized with the result that satisfactory strain image quality has been obtained. These techniques have been incorporated into implementing a medical ultrasound strain imaging system that operates in real time.

A Method Estimating Displacement using Measured Strain Response of Simply Supported Girder Bridges (단순지지 거더교의 실측 변형률 응답을 이용한 변위 추정 방법)

  • Jeon, Jun-Chang;Lee, Hee-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.18-24
    • /
    • 2016
  • This study presents a simple method which can estimate displacement using measured strain response of simply supported girder bridges. The basic concept of the present method is derived from a relation between displacement and strain, and is generalized by introducing analytical tool. Static and dynamic laboratory test are conducted on simply supported plate which is designed to respond dynamically similar to actual bridges to experimentally verify the present method, and displacement and strain are measured at the midpoint of specimen. Displacement estimated by using measured strain is well agreed with measured one. This study demonstrates that the present method is suitable for estimating displacement of real simply supported bridge, in which the installation of a displacement transducer at the fixed reference point is difficult.

Crack Opening Displacement Estimation for Engineering Leak-Before-Break Analyses of Pressurized Nuclear Piping (원자력 배관의 공학적 파단전누설 해석을 위한 균열열림변위 계산)

  • Huh Nam-Su;Kim Yun-Jae;Chang Yoon-Suk;Yang Jun-Seok;Choi Jae-Boons
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1612-1620
    • /
    • 2004
  • This study presents methods to estimate elastic-plastic crack opening displacement (COD) fur circumferential through-wall cracked pipes for the Leak-Before-Break (LBB) analysis of pressurized piping. Proposed methods are based not only on the GE/EPRI approach but also on the reference stress approach. For each approach, two different estimation schemes are given, one for the case when full stress-strain data are available and the other fur the case when only yield and ultimate tensile strengths are available. For the GE/EPRI approach a robust way of determining the Ramberg-Osgood (R-O) parameters is proposed, not only fur the case when detailed information on full stress-strain data is available but also for the case when only yield and ultimate tensile strengths are available. The COD estimates according to the GE/EPRI approach, using the R-O parameters determined from the proposed R-O fitting procedures, generally compare well with the published pipe test data. For the reference stress approach, the COD estimates according to the method based on both full stress-strain data and limited tensile properties are in good agreement with pipe test data. In conclusion, experimental validation given in the present study provides sufficient confidence in the use of the proposed method to practical LBB analyses even though when information on material's tensile properties is limited.

Strength Estimation of Die Cast Beams Considering Equivalent Porous Defects (다이캐스팅 보의 등가 기공결함을 고려한 강도평가)

  • Park, Moon Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.337-343
    • /
    • 2017
  • As a shop practice, a strength estimation method for die cast parts is suggested, in which various defects such as pores can be allowed. The equivalent porosity is evaluated by combining the stiffness data from a simple elastic test at the part level during the shop practice and the theoretical stiffness data, which are defect free. A porosity equation is derived from Eshelby's inclusion theory. Then, using the Mori-Tanaka method, the porosity value is used to draw a stress-strain curve for the porous material. In this paper, the Hollomon equation is used to capture the strain hardening effect. This stress-strain curve can be used to estimate the strength of a die cast part with porous defects. An elastoplastic theoretical solution is derived for the three-point bending of a die cast beam by using the plastic hinge method as a reference solution for a part with porous defects.

Fatigue Life Estimation of Induction-Hardened Drive Shaft Under Twisting Loads (비틀림 하중을 받는 고주파열처리 드라이브 차축의 피로수명 평가)

  • Kim, Tae Young;Kim, Tae An;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.567-573
    • /
    • 2017
  • The drive shaft of passenger vehicle has an important role in transmitting the torque between the power train system and the wheels. Torsional fatigue failures occur generally in the connection parts of the spline edge of the drive shaft, when there is significant fatigue damage under repeated twisting loads. A heat treatment, an induction hardening process, has been adopted to increase the torsional strength as well as the fatigue life of the drive shaft. However, it is still unclear how the extension of the induction hardening process in a used material relates to its shear-strain fatigue life range. In this study, a shear-strain controlled torsional-fatigue test with a specially designed specimen was conducted by an electro-dynamic torsional fatigue test machine. A finite element analysis of the drive shaft was carried out using the results obtained by the fatigue experiment. The estimated fatigue life was verified through a twisting load test of the real drive shaft in a test rig.

Extended artificial neural network for estimating the global response of a cable-stayed bridge based on limited multi-response data

  • Namju Byun;Jeonghwa Lee;Keesei Lee;Young-Jong Kang
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.235-251
    • /
    • 2023
  • A method that can estimate global deformation and internal forces using a limited amount of displacement data and based on the shape superposition technique and a neural network has been recently developed. However, it is difficult to directly measure sufficient displacement data owing to the limitations of conventional displacement meters and the high cost of global navigation satellite systems (GNSS). Therefore, in this study, the previously developed estimation method was extended by combining displacement, slope, and strain to improve the estimation accuracy while reducing the need for high-cost GNSS. To validate the proposed model, the global deformation and internal forces of a cable-stayed bridge were estimated using limited multi-response data. The effect of multi-response data was analyzed, and the estimation performance of the extended method was verified by comparing its results with those of previous methods using a numerical model. The comparison results reveal that the extended method has better performance when estimating global responses than previous methods.

Crack Length Estimation for Large Deformable Non-Linear Elastic Materials (대변형 비선형 탄성재료의 균열길이 예측)

  • Yang, Gyeong-Jin;Gang, Gi-Ju;Park, Sang-Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.103-109
    • /
    • 2000
  • A method to measure the crack length in rubbery materials is described. Through dimensional analysis and experiments, an equation is derived to give the crack length as a function of the change of strain energy density in a region remote from the crack. The function is provided in a form of separated terms of loading and material, the validity of which is experimentally proved using separation parameters.

A Study on the In-Situ Measurement of the Deformation and the Back Calculation of the Load in the Mine Roadway Over-Stressed Rocks (중지압 운반 갱도내 변형계측 및 하중역산에 관한 연구)

  • Cho, Young-Soo;Kim, Hong-Woo;Shin, Hee-Soon;Chung, So-Keul;Lee, Hi-Keun
    • Tunnel and Underground Space
    • /
    • v.3 no.1
    • /
    • pp.40-49
    • /
    • 1993
  • In this study, the indirect estimation method of the support load which is based upon the integrated measuring technique suggested by Kovari was applied to the calculation of support load in the mine roadway. Four test supports were installed in the area where they had to be replaed. Two of those were GI-130 rigid supports and the others were U-26 yieldable supports. The vibrating wire strain gages which were attached inpairs on the steel arch support were used to provide an accurate measurement. Bending moments and normal forces obtained from strain gage pairs were used to calculate the support load. This method was also verified by laboratory bending tests. The results obtained from the back-calculction method showed relatively good agreement with the measured convergence for each crossection.

  • PDF

Reliability Estimation of Ball Grid Array 63Sn-37Pb Solder Joint (Ball Grid Array 63Sn-37Pb Solder joint 의 건전성 평가)

  • 명노훈;이억섭;김동혁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.630-633
    • /
    • 2004
  • Generally, component and FR-4 board are connected by solder joint. Because material properties of components and FR-4 board are different, component and FR-4 board show different coefficients of thermal expansion (CTE) and thus strains in component and board are different when they are heated. That is, the differences in CTE of component and FR-4 board cause the dissimilarity in shear strain and BGA solder joint s failure. The first order Taylor series expansion of the limit state function incorporating with thermal fatigue models is used in order to estimate the failure probability of solder joints under heated condition. A model based on plastic-strain rate such as the Coffin-Manson Fatigue Model is utilized in this study. The effects of random variables such as frequency, maximum temperature, and temperature variations on the failure probability of the BGA solder joint are systematically investigated by using a failure probability model with the first order reliability method(FORM).

  • PDF