• Title/Summary/Keyword: storm damage

Search Result 203, Processing Time 0.022 seconds

A Study on Scenario to establish Coastal Inundation Prediction Map due to Storm Surge (폭풍해일에 의한 해안침수예상도 작성 시나리오 연구)

  • Moon, Seung-Rok;Kang, Tae-Soon;Nam, Soo-Yong;Hwang, Joon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.492-501
    • /
    • 2007
  • Coastal disasters have become one of the most important issues in every coastal country. In Korea, coastal disasters such as storm surge, sea level rise and extreme weather have placed many coastal regions in danger of being exposed or damaged during subsequent storms and gradual shoreline retreat. A storm surge is an onshore gush of water associated with a tow pressure weather system, typically in typhoon season. However, it is very difficult to predict storm surge height and inundation due to the irregularity of the course and intensity of a typhoon. To provide a new scheme of typhoon damage prediction model, the scenario which changes the central pressure, the maximum wind radius, the track and the proceeding speed by corresponding previous typhoon database, was composed. The virtual typhoon scenario database was constructed with individual scenario simulation and evaluation, in which it extracted the result from the scenario database of information of the hereafter typhoon and information due to climate change. This virtual typhoon scenario database will apply damage prediction information about a typhoon. This study performed construction and analysis of the simulation system with the storm surge/coastal inundation model at Masan coastal areas, and applied method for predicting using the scenario of the storm surge.

Development of Categorization System for Efficient Calculation of Damage Cost according to Strong Wind (강풍 피해에 따른 피해비용의 효율적인 산정을 위한 분류체계 개발)

  • Song, Chang Young;Lee, Jong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.127-132
    • /
    • 2016
  • In this study, the plan to construct a disaster information categorization system that can be objectively and efficiently performed was suggested in order to perform disaster management task systematically. Recently, the damage of natural disasters is gradually growing larger and faster, increasing the economic loss. Especially, as for the domestic storm damage, the damage from strong wind was found to be greater than the damage from torrential rain. Also, strong wind was found to be inflicting a great damage on human life, property and agricultural crops, so the necessity to study damage restoration from strong wind is increasing. Nevertheless, the damage items categorized in the domestic disaster year book are often comprehensive or unclear in criteria, and thus fail to reflect items or matters due to actual disaster damage. It is difficult to aggregate damage accurately such that it does not correspond to the national compensation scope or the damage amount is calculated according to subjective judgment of the investigator in charge. As such, if the disaster information management is inadequate by not applying accurate categorization criteria from damage amount calculation, there can be an issue with fairness when paying the damage support aid. Therefore, this study suggested a categorization plan for objective and efficient execution of disaster information management task in order to resolve such issues. It is expected that quick and efficient execution would be possible in disaster information management and task procedure domestically by constructing systematic categorization system related to disaster information.

Gale Disaster Damage Investigation Process Provement Plan according to Correlation Analysis between Wind Speed and Damage Cost -Centering on Disaster Year Book- (풍속과 피해액 간 상관관계분석에 따른 강풍재해피해조사 프로세스 개선방안 -재해연보를 중심으로-)

  • Song, Chang Young;Yang, Byong Soo
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.119-126
    • /
    • 2016
  • Across the world, the industrialization has increased the frequency of climate anomaly. The size of damage due to recent natural disasters is growing large and fast, and the human damage and economic loss due to disasters are consistently increasing. Urbanization has a structure vulnerable to natural disasters. Therefore, in order to reduce damage from natural disasters, both hardware and software approaches should be utilized. Currently, however, the development of a statistical access process for 'analysis of disaster occurrence factor' and 'prediction of damage costs' for disaster prevention and overall disaster management is inadequate. In case of local governments, overall disaster management system is not established, or even if it is established, unscientific classification system and management lead to low utility of natural statistics of disaster year book. Therefore, in order to minimize disaster damage and for rational disaster management, the disaster damage survey process should be improved. This study selected gale as the focused analysis target among natural disasters recorded in disaster year book such as storm, torrential rain, gale, high seas, and heavy snow, and analyzed disaster survey process. Based on disaster year book, the gale damage size was analyzed and the issues occurring from the correlation of gale and damage amount were examined, so as to suggest an improvement plan for reliable natural disaster information collection and systematic natural disaster damage survey.

Flood Simulation of Upriver District Considering an Influence of Backwater

  • Um, Dae Yong;Song, Yong Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.631-642
    • /
    • 2012
  • This study aims to predict inundation and flood-stricken areas more accurately by simulating flood damage caused by reversible flow of rain water in the upper water system through precise 3D terrain model and backwater output. For the upstream of the South Han-River, precise 3D terrain model was established by using aerial LiDAR data and backwater by area was output by applying the storm events of 2002 including the history of flood damage. The 3D flood simulation was also performed by using GIS Tool and for occurrence of related rainfall events, inundation events of the upriver region of water system was analyzed. In addition, the results of flood simulation using backwater were verified by making the inundation damage map for the relevant area and comparing it with flood simulation's results. When comparing with the results of the flood simulation applying uniformly the gauging station's water surface elevation used for the existing flood simulation, it is found that the results of the flood simulation using backwater are close to the actual inundation damage status. Accordingly, the causes of flood occurred in downstream of water system and upstream that has different topographic characteristics could be investigated and applying the simulation with backwater is proved more proper in order to procure accuracy of the flood simulation for the upriver region.

Location Tracking of Drifting Container by Solitary Wave Load Using a Motion Analysis Program

  • Taegeon Hwang;Jiwon Kim;Dong-Ha Lee;Jae-Cheol Lee
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.158-163
    • /
    • 2023
  • Objects adrift can cause considerable damage to coastal infrastructure and property during tsunami and storm surge events. Despite the potential for harm, the drifting behavior of these objects remains poorly understood, thereby hindering effective prediction and mitigation of collision damage. To address this gap, this study employed a motion analysis program to track a drifting container's location using images from an existing laboratory experiment. The container's trajectory and velocity were calculated based on the positions of five markers strategically placed at its four corners and center. Our findings indicate that the container's maximum drift velocity and distance are directly influenced by the scale of the solitary wave and inversely related to the container's weight. Specifically, heavier containers are less likely to be displaced by solitary waves, while larger waves can damage coastal structures more. This study offers new insights into container drift behavior induced by solitary waves, with implications for enhancing coastal infrastructure design and devising mitigation strategies to minimize the risk of collision damage.

The Study on the Impulse Characteristic of Secondary Arresters in Power Distribution System (배전급 저압피뢰기 임펄스 특성 연구)

  • Kang, Moon-Ho;Park, Sang-Man;Park, Young-Keun;Jang, Sang-Ok;Lee, Heung-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.295-297
    • /
    • 2004
  • The overvoltage generated by the lightning strokes has been doing considerable damage to the distribution network as well as the consumer facility until now. Because most of the lightning strokes are accompanied by a storm, the aftermath of damage to the consumer is so serious. Therefore it is very important to survey the optimal operation plan by the field test of distribution lightning facilities. In this paper we have accomplished the field test to verify the impulse characteristic of Secondary Arrester(SA), and analyzed the effect of the SA in power distribution system.

  • PDF

Developing Coast Vulnerable Area Information Management System using Web GIS (Web GIS를 이용한 연안위험취약지역 정보시스템 구축)

  • Pak, Hyeon-Cheol;Kim, Hyoung-Sub;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.155-164
    • /
    • 2005
  • The coast has been known as very vulnerable area. This area has nature disasters such as typhoon, tidal wave, flood and storm almost every year. In this study, coast vulnerable area information management system was developed to manage the coastal facilities and vulnerable area through Web GIS. This system is able to visualize the damage area and support the official work related to coast as efficient DSS(Decision Supporting System). Moreover, the foundation for domestic coast information management is expected by acquiring less cost and time. For this, GIS DB was first constructed by acquiring damage factor data such as typhoon, tidal wave, flood and storm. Then GIS analysis methods and high resolution satellite images are used to possibly present the results of retrieve as table, map, graph, inundation simulation in real time.

  • PDF

Meteorological Disaster of Jeju Island in Chosun Dynasty and the Response Aspect of Government and Islanders (조선시대 제주도의 기상재해와 관민(官民)의 대응 양상)

  • Kim, Oh-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.6
    • /
    • pp.858-872
    • /
    • 2008
  • This study examined the meteorological disaster of Jeju Island in Chosun Dynasty based on historical documents, and analyzed how its government and Jeju Islanders responded to this. Recording cases of abnormal weather days of Jeju Island in Chosun Dynasty were most in 17th Century, and then in 18th Century, 16th Century, 15th Century, and 19th Century in order. For the type of meteorological disaster, storm damage was most serious, and then flood disaster, drought disaster, and snow damage were in order. For the region, Jejumok was mostly damaged from storm and flood, and Daejeonghyeon was mostly from drought. Once meteorological disaster occurred, it was a common thing that it continued with famine. The Chosun government relieved Jeju Islanders by moving the grains of mainland into Jeju Island, and for this, installed Galdujin warehouse, Naripo warehouse, and Jemin warehouse. Also, it tried to resolve chronic famine by moving Jeju people into mainland such as Pyeong'an-do. Corresponding to severe weather, the farmers of Jeju Island implemented agricultural methods such as Dapjeon, Baryeong, molding, and wind-breaking; and the seamen conducted unique arts of navigation such as Hwanjeon, and gravel shipment.

A Mechanism Analysis of Landspout Generation Occurred over Ilsan on June 10 2014 using a Numerical Model (수치모델을 활용한 2014년 6월 10일 일산 용오름 발생 메커니즘 분석)

  • In, So-Ra;Jung, Sueng-Pil;Shim, JaeKwan;Choi, Byoung-Choel
    • Journal of the Korean earth science society
    • /
    • v.37 no.4
    • /
    • pp.187-199
    • /
    • 2016
  • The purpose of this study is to investigate the formation mechanism of landspout by using the Cloud Resolving Storm Simulator (CReSS). The landspout occurred over Ilsan, Goyang City, the Republic of Korea on June 10, 2014 with the damage of a private property. In synoptic environment, a cold dry air on the upper layers of the atmosphere, and there was an advection with warm and humid air in the lower atmosphere. Temperature differences between upper and lower layers resulted in thermal instability. The storm began to arise at 1920 KST and reached the mature stage in ten minutes. The cloud top height was estimated at 9 km and the hook echo was appeared at the rear of a storm in simulation result. Model results showed that the downburst was generated in the developed storm over the Ilsan area. This downburst caused the horizontal flow when it diverged near the surface. The horizontal flow was switched to updraft at the rear of storm, and the rear-flank downdrafts (RFDs) current occurred from simulation result. The RFDs took down the vertical flow to the surface. After then, the vertical vorticity could be generated on the surface in simulation result. Subsequently, the vertical vorticity was stretched to form a landspout. The cyclonic vorticity of echo hook from simulation was greater than $3{\times}10^{-2}s^{-1}$(height of 360 m) and landspout diameter was estimated at 1 km.

Developing Statistics of the Direct and Indirect Socioeconomic Losses from Storm and Flood to Construct Regional Spatial Information System (지역공간정보체계 구축을 위한 풍수해의 사회경제적인 직·간접손실 항목 도출에 관한 연구)

  • Hyun, Su-Hyun;Kim, Hag-Yeol
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.4
    • /
    • pp.95-107
    • /
    • 2017
  • Since disasters have been getting stronger and wider according to the influence of climate change, those impacts on social and national economy have been also getting more severe in various subjects. However, as direct property damage as well as casualties are only measured in case of disasters, monetary figures on its losses are likely to be underestimated, which are known as a major barrier to both compensation for loss and making a regional disaster management plan. Thus, the main purpose of this study is to develop statistics appropriate to the direct and indirect socioeconomic losses, which have continuously been overlooked. To achieve this purpose, this study defines the scope of direct and indirect socioeconomic losses, provides a framework for developing those measurements, and determines a preliminary statistics list. Selection criteria to set the final list are decided and are then applied to the list. The result of this study can be used as basic data for further studies to estimate and calculate its socioeconomic losses from storm and flood.