• Title/Summary/Keyword: storm damage

Search Result 203, Processing Time 0.027 seconds

Application of dual drainage system model for inundation analysis of complex watershed (복합유역의 침수해석을 위한 이중배수체계 유출모형의 적용)

  • Lee, Jaejoon;Kwak, Changjae;Lee, Sungho
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.301-312
    • /
    • 2019
  • The importance of the dual drainage system model has increased as the urban flood damage has increased due to the increase of local storm due to climate change. The dual drainage model is a model for more accurately expressing the phenomena of surface flow and conduit flow. Surface runoff and pipe runoff are analyzed through the respective equations and parameters. And the results are expressed visually in various ways. Therefore, inundation analysis results of dual drainage model are used as important data for urban flood prevention plan. In this study, the applicability of the COBRA model, which can be interpreted by combining the dual drainage system with the natural watershed and the urban watershed, was investigated. And the results were compared with other dual drainage models (XP-SWMM, UFAM) to determine suitability of the results. For the same watershed, the XP-SWMM simulates the flooding characteristics of 3 types of dual drainage system model and the internal flooding characteristics due to the lack of capacity of the conduit. UFAM showed the lowest inundation analysis results compared with the other models according to characteristics of consideration of street inlet. COBRA showed the general result that the flooded area and the maximum flooding depth are proportional to the increase in rainfall. It is considered that the COBRA model is good in terms of the stability of the model considering the characteristics of the model to simulate the effective rainfall according to the soil conditions and the realistic appearance of the flooding due to the surface reservoir.

A Study on the Analysis of Information Element of COP-Based Situation Panel for Efficient Disaster Management in the Situation Room (상황실의 효율적인 재난관리를 위한 COP기반 상황판 정보요소 분석에 관한 연구: 풍수해를 중심으로)

  • Cho, Jung-Yun;Song, Ju-Il;Jang, Cho-Rok;Jang, Moon-Yup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.393-401
    • /
    • 2021
  • This study derives essential information elements that should be shared in the situation board by utilizing the concept of common operating picture (COP). The COP's concept and actual overseas cases were confirmed, and COP information elements that should be considered for disaster situations were redefined. The COP disaster response information elements were derived by analyzing the standard manual for disaster response and daily situation reports issued in Korea. The information elements were divided into four stages (①Report reception and recognition stages, ②Situation propagation and reporting stages, ③Emergency equipment operation stages, ④Recovery and recovery stages), centered on storm and flood damage. Further analysis of the detailed information elements was conducted to derive the information elements that must be shared in the context board. The information is shared along with spatial and geographical characteristics due to the characteristics of the COP, providing complex information to decisionmakers and officials, enabling diverse access to disaster situations. Furthermore, it is expected that disaster response will be more efficient by sharing the information in common.

Inundation Pattern Analysis of Excavation at Construction Site and Derivation of Diasaster Cause and Effect Using Fish-bone Diagram (굴착공사현장 침수양상 해석 및 어골도에 의한 침수피해 원인 및 결과 도출)

  • Yoo, Dong-Hyun;Song, Chang Geun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.8
    • /
    • pp.84-91
    • /
    • 2021
  • In the 21st century, a number of storm and flood disasters caused by rapidly changing climate change is increasing, and the number of flood accidents at construction sites is also increasing. However, no specific reduction measures have been presented and thereby safety management to prevent flood accident need to be improved. Therefore, in this study, the inundation pattern by downpour at the excavation site was interpreted and the inundation risk quantification method was used to classify the risk magnitude. Finally, using the fish-bone diagram, we derived the major reasons of inundation accident at construction site systematically. The simulation results showed that the inundation depths of small-scale excavation sites and excavation sites exceeded 3 m due to the fluid flowing through the excavation surface. In addition, depending on the excavation site, a high velocity temporarily observed and decreased due to the storage effect, or high velocity surpassing 10 m/s continued. Since this type of flooding can pose a risk to most or all workers, if proper management measures are insufficient, fatal damage to life and property could occur. Consideration of the roots of these disasters is judged to be helpful in understanding the causes of inundation accidents that result in casualties and presenting accident reduction measures.

Real-time flood prediction applying random forest regression model in urban areas (랜덤포레스트 회귀모형을 적용한 도시지역에서의 실시간 침수 예측)

  • Kim, Hyun Il;Lee, Yeon Su;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1119-1130
    • /
    • 2021
  • Urban flooding caused by localized heavy rainfall with unstable climate is constantly occurring, but a system that can predict spatial flood information with weather forecast has not been prepared yet. The worst flood situation in urban area can be occurred with difficulties of structural measures such as river levees, discharge capacity of urban sewage, storage basin of storm water, and pump facilities. However, identifying in advance the spatial flood information can have a decisive effect on minimizing flood damage. Therefore, this study presents a methodology that can predict the urban flood map in real-time by using rainfall data of the Korea Meteorological Administration (KMA), the results of two-dimensional flood analysis and random forest (RF) regression model. The Ujeong district in Ulsan metropolitan city, which the flood is frequently occurred, was selected for the study area. The RF regression model predicted the flood map corresponding to the 50 mm, 80 mm, and 110 mm rainfall events with 6-hours duration. And, the predicted results showed 63%, 80%, and 67% goodness of fit compared to the results of two-dimensional flood analysis model. It is judged that the suggested results of this study can be utilized as basic data for evacuation and response to urban flooding that occurs suddenly.

An Analysis on Climate Change and Military Response Strategies (기후변화와 군 대응전략에 관한 연구)

  • Park Chan-Young;Kim Chang-Jun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.171-179
    • /
    • 2023
  • Due to man-made climate change, global abnormal weather phenomena have occurred, increasing disasters. Major developed countries(military) are preparing for disasters caused by extreme weather appearances. However, currently, disaster prevention plans and facilities have been implemented based on the frequency and intensity method based on statistical data, it is not enough to prepare for disasters caused by frequent extreme weather based on probability basis. The U.S. and British forces have been the fastest to take research and policy approaches related to climate change and the threat of disaster change, and are considering both climate change mitigation and adaptation. The South Korean military regards the perception of disasters to be storm and flood damage, and there is a lack of discussion on extreme weather and disasters due to climate change. In this study, the process of establishing disaster management systems in developed countries(the United States and the United Kingdom) was examined, and the response policies of each country(military) were analyzed using literature analysis techniques. In order to maintain tight security, our military should establish a response policy focusing on sustainability and resilience, and the following three policy approaches are needed. First, it is necessary to analyze the future operational environment of the Korean Peninsula in preparation for the environment that will change due to climate change. Second, it is necessary to discuss climate change 'adaptation policy' for sustainability. Third, it is necessary to prepare for future disasters that may occur due to climate change.

Analysis of the Effectiveness of Nature-based Solutions for River Flood Level Reduction (하천 홍수위 저감을 위한 자연기반해법의 적용효과 분석)

  • Hoyong Lee;Minseok Kim;Junhyeong Lee;Taewoo Lee;Hung Soo Kim;Soojun Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.379-385
    • /
    • 2023
  • EDue to climate change and urbanization, the localized heavy rainfall frequently exceeded a design storm rainfall and flood damage has occurred in South Korea. The concept of addressing sustainable river management and environmental and social issues through Nature-based Solutions (NbS) is gaining attention as it seeks to resolve these issues through ecosystem services. Therefore, in this study, the flood reduction effect by river management using NbS was quantitatively analyzed for the Hwang River, which is directly downstream of Hapcheon Dam, South Korea. Floodplain excavation and dyke relocation, which are methods of the NbS, were applied to the flood risk area of the Hwang River. As a result of analyzing the flood level of the river through the unsteady flow analysis of HEC-RAS, we obtained flood level reduction by 8 cm at the confluence of the Nakdong River. The results of this study can be expected to be sufficiently utilized as a basis for use as a management plan through NbS rather than the river management with grey infrastructure.

A Study on the Vulnerability Assessment of Solar Power Generation Facilities Considering Disaster Information (재해정보를 고려한 태양광발전시설의 취약성 평가에 관한 연구)

  • Heejin Pyo
    • Land and Housing Review
    • /
    • v.15 no.2
    • /
    • pp.57-71
    • /
    • 2024
  • This study aims to develop an evaluation method for solar power facilities considering disaster impacts and to analyse the vulnerabilities of existing facilities. Haenam-gun in Jeollanam-do, where the reassessment of existing facilities is urgent, was selected as the study area. To evaluate the vulnerability from a more objective perspective, principal component analysis and entropy methods were utilised. Seven vulnerability assessment indicators were selected: maximum hourly rainfall, maximum wind speed, number of typhoon occurrence days, number of rainfall days lasting more than five days, maximum daily rainfall, impermeable area ratio, and population density. Among these, maximum hourly rainfall, maximum wind speed, maximum daily rainfall, and number of rainfall days lasting more than five days were found to have the highest weights. The overlay of the derived weights showed that the southeastern regions of Haenam-eup and Bukil-myeon were classified as Grade 1 and 2, whereas the northern regions of Hwawon-myeon, Sani-myeon, and Munnae-myeon were classified as Grade 4 and 5, indicating differences in vulnerability. Of the 2,133 facilities evaluated, 91.1% were classified as Grade 3 or higher, indicating a generally favourable condition. However, there were more Grade 1 facilities than Grade 2, highlighting the need for countermeasures. This study is significant in that it evaluates solar power facilities considering urban disaster resilience and is expected to be used as a basic resource for the installation of new facilities or the management and operation of existing ones.

Influences of the devastated forest lands on flood damages (Observed at Chonbo and the neighbouring Mt. Jook-yop area) (황폐임야(荒廢林野)가 수해참상(水害慘狀)에 미치는 영향(影響) (천보산(天寶山)과 인접(隣接) 죽엽산(竹葉山)을 중심(中心)으로))

  • Chung, In Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.5 no.1
    • /
    • pp.4-9
    • /
    • 1966
  • 1. On 13 September 1964 a storm raged for 3 hours and 20 minutes with pounding heavy rainfalls, and precipitation of 287.5 mm was recorded on that day. The numerous landslides were occured in the eroded forest land neighbouring Mt. Chunbo, while no landslides recorde at all on Mt. Jookyup within the premise of Kwangnung Experiment Station, the Forest Experiment Station. 2. Small-scalled Landslides were occured in 43 different places of watershed area (21.97 ha.) in which the survey had already been done, in and around Mt. Chunbo (378 m a.s.l.). The accumulated soil amount totaled $2,146,56m^3$ due to the above mentioned landslides, while soil accumulated from riverside erosion has reached to $24,168.79m^3$, consisting of soils, stones, and pebbles. However, no landslides were reported in the Mt. Jook yup area because of dense forest covers. The ratio of the eroded soil amount accumulated from the riversides to that of watershed area was 1 to 25. On the other hand, the loss and damage in the research area of Mt. Chonbo are as follows: 28 houses completly destroyed or missing 7 houses partially destroyed 51 men were dead 5 missing, and 57 wounded. It was a terrible human disaster However, no human casualties were recorded at all, 1 house-completly destroyed and missing, 2 houses-partially destroyed. Total:3 houses were destroyed or damaged, in The area of Mt. Jookyup 3. In the calculation of the quanty of accumulated soil, the or mula of "V=1/3h ($a+{\sqrt{ab}}+b$)" was used and it showed that 24, 168.79m of soil, sands, stones and pebbles carried away. 4. Average slope of the stream stood 15 at the time of accident and well found that there was a correlation between the 87% of cross-area sufferd valley erosion and the length of eroded valley, after a study on regression and correlation of the length and cross-area. In other works, the soil erosion was and severe as we approached to the down-stream, counting at a place of average ($15^{\circ}1^{\prime}$) and below. We might draw a correlation such as "Y=ax-b" in terms of the length and cross-area of the eroded valley. 5. Sites of char-coal pits were found in the upper part of the desert-like Mt. Chunbo and a professional opinion shows that the mountain was once covered by the oak three species. Furthermore, we found that the soil of both mountains have been kept the same soil system according to a research of the soil cross-area. In other words, we can draw out the fact that, originally, the forest type and soil type of both Mt. Chunbo (378m) and Mt. Jookyup (610m) have been and are the same. However, Mt. Chunbo has been much more devastated than Mt. Jookyup, and carried away its soil nutrition to the extent that the ratios of N. $P_2O_5K_2O$ and Humus C.E.C between these two mountains are 1:10;1:5 respectively. 6. Mt. Chunbo has been mostly eroded for the past 30 years, and it consists of gravels of 2mm or larger size in the upper part of the mountain, while in the lower foot part, the sandy loam was formulated due to the fact that the gluey soil has been carried and accumulated. On the hand, Mt. Jookyup has consitantly kept the all the same forest type and sandy loam of brown colour both in the upper and lower parts. 7. As for the capability of absorbing and saturating maximum humidity by the surface soil, the ratios of wet soil to dry soil are 42.8% in the hill side and lower part of the eroded Mt. Chunbo and 28.5% in the upper part. On the contrary, Mt. Jookyup on which the forest type has not been changed, shows that the ratio in 77.4% in the hill-side and 68.2% in the upper part, approximately twice as much humidity as Mt. Chunbo. This proves the fact that the forest lands with dense forest covers are much more capable of maintaining water by wood, vegitation, and an organic material. The strength of dreventing from carring away surface soil is great due to the vigorous network of the root systems. 8. As mentioned above, the devastated forest land cause not only much greater devastation, but also human loss and property damage. We must bear in mind that the eroded forest land has taken the valuable soil, which is the very existance of origin of both human being and all creatures. As for the prescription for preventing erosion of forest land, the trees for furtilization has to be planted in the hill,side with at least reasonable amount of aertilizer, in order to restore the strength of earth soil, while in the lower part, thorough erosion control and reforestation, and establishments along the riversides have to be made, so as to restore the forest type.

  • PDF

A Feasibility Study on GMC (Geo-Multicell-Composite) of the Leachate Collection System in Landfill (폐기물 매립시설의 배수층 및 보호층으로서의 Geo-Multicell-Composite(GMC)의 적합성에 관한 연구)

  • Jung, Sung-Hoon;Oh, Seungjin;Oh, Minah;Kim, Joonha;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.67-76
    • /
    • 2013
  • Landfill require special care due to the dangers of nearby surface water and underground water pollution caused by leakage of leachate. The leachate does not leak due to the installation of the geomembrane but sharp wastes or landfill equipment can damage the geomembrane and therefore a means of protecting the geomembrane is required. In Korea, in accordance with the waste control act being modified in 1999, protecting the geosynthetics liner on top of the slope of landfill and installing a drainage layer to fluently drain leachate became mandatory, and technologies are being researched to both protect the geomembrane and quickly drain leachate simultaneously. Therefore, this research has its purpose in studying the drainage functions of leachate and protection functions of the geomembrane in order to examine the application possibilities of Geo-Multicell-Composite (GMC) as a Leachate Collection Removal and Protection System (LCRPs) at the slope on top of the geomembrane of landfill by observing methods of inserting filler with high-quality water permeability at the drainage net. GMC's horizontal permeability coefficient is $8.0{\times}10^{-4}m^2/s$ to legal standards satisfeid. Also crash gravel used as filler respected by vertical permeability is 5.0 cm/s, embroidering puncture strength 140.2 kgf. A result of storm drain using artificial rain in GMC model facility, maxinum flow rate of 1,120 L/hr even spray without surface runoff was about 92~97% penetration. Further study, instead of crash gravel used as a filler, such as using recycled aggregate utilization increases and the resulting construction cost is expected to savings.

Estimation of the Moisture Maximizing Rate based on the Moisture Inflow Direction : A Case Study of Typhoon Rusa in Gangneung Region (수분유입방향을 고려한 강릉지역 태풍 루사의 수분최대화비 산정)

  • Kim, Moon-Hyun;Jung, Il-Won;Im, Eun-Soon;Kwon, Won-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.697-707
    • /
    • 2007
  • In this study, we estimated the PMP(Probable Maximum Precipitation) and its transition in case of the typhoon Rusa which happened the biggest damage of all typhoons in the Korea. Specially, we analysed the moisture maximizing rate under the consideration of meteorological condition based on the orographic property when it hits in Gangneung region. The PMP is calculated by the rate of the maximum persisting 12 hours 1000 hPa dew points and representative persisting 12 hours 1000 hPa dew point. The former is influenced by the moisture inflow regions. These regions are determined by the surface wind direction, 850 hPa moisture flux and streamline, which are the critically different aspects compared to that of previous study. The latter is calculated using statistics program (FARD2002) provided by NIDP(National Institute for Disaster Prevention). In this program, the dew point is calculated by reappearance period 50-year frequency analysis from 5% of the level of significant when probability distribution type is applied extreme type I (Gumbel distribution) and parameter estimation method is used the Moment method. So this study indicated for small basin$(3.76km^2)$ the difference the PMP through new method and through existing result of established storm transposition and DAD(Depth-Area-Duration). Consequently, the moisture maximizing rate is calculated in the moisture inflow regions determined by meteorological fields is higher $0.20{\sim}0.40$ range than that of previous study. And the precipitation is increased $16{\sim}31%$ when this rate is applied for calculation.