• Title/Summary/Keyword: stock price volatility

Search Result 132, Processing Time 0.024 seconds

The Stock Portfolio Recommendation System based on the Correlation between the Stock Message Boards and the Stock Market (인터넷 주식 토론방 게시물과 주식시장의 상관관계 분석을 통한 투자 종목 선정 시스템)

  • Lee, Yun-Jung;Kim, Gun-Woo;Woo, Gyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.10
    • /
    • pp.441-450
    • /
    • 2014
  • The stock market is constantly changing and sometimes the stock prices unaccountably plummet or surge. So, the stock market is recognized as a complex system and the change on the stock prices is unpredictable. Recently, many researchers try to understand the stock market as the network among individual stocks and to find a clue about the change of the stock prices from big data being created in real time from Internet. We focus on the correlation between the stock prices and the human interactions in Internet especially in the stock message boards. To uncover this correlation, we collected and investigated the articles concerning with 57 target companies, members of KOSPI200. From the analysis result, we found that there is no significant correlation between the stock prices and the article volume, but the strength of correlation between the article volume and the stock prices is relevant to the stock return. We propose a new method for recommending stock portfolio base on the result of our analysis. According to the simulated investment test using the article data from the stock message boards in 'Daum' portal site, the returns of our portfolio is about 1.55% per month, which is about 0.72% and 1.21% higher than that of the Markowitz's efficient portfolio and that of the KOSPI average respectively. Also, the case using the data from 'Naver' portal site, the stock returns of our proposed portfolio is about 0.90%, which is 0.35%, 0.40%, and 0.58% higher than those of our previous portfolio, Markowitz's efficient portfolio, and KOSPI average respectively. This study presents that collective human behavior on Internet stock message board can be much helpful to understand the stock market and the correlation between the stock price and the collective human behavior can be used to invest in stocks.

Deep Learning-Based Short-Term Time Series Forecasting Modeling for Palm Oil Price Prediction (팜유 가격 예측을 위한 딥러닝 기반 단기 시계열 예측 모델링)

  • Sungho Bae;Myungsun Kim;Woo-Hyuk Jung;Jihwan Woo
    • Information Systems Review
    • /
    • v.26 no.2
    • /
    • pp.45-57
    • /
    • 2024
  • This study develops a deep learning-based methodology for predicting Crude Palm Oil (CPO) prices. Palm oil is an essential resource across various industries due to its yield and economic efficiency, leading to increased industrial interest in its price volatility. While numerous studies have been conducted on palm oil price prediction, most rely on time series forecasting, which has inherent accuracy limitations. To address the main limitation of traditional methods-the absence of stationarity-this research introduces a novel model that uses the ratio of future prices to current prices as the dependent variable. This approach, inspired by return modeling in stock price predictions, demonstrates superior performance over simple price prediction. Additionally, the methodology incorporates the consideration of lag values of independent variables, a critical factor in multivariate time series forecasting, to eliminate unnecessary noise and enhance the stability of the prediction model. This research not only significantly improves the accuracy of palm oil price prediction but also offers an applicable approach for other economic forecasting issues where time series data is crucial, providing substantial value to the industry.

A Study on the Analysis of Optimal Asset Allocation and Welfare Improvemant Factors through ESG Investment (ESG투자를 통한 최적자산배분과 후생개선 요인분석에 관한 연구)

  • Hyun, Sangkyun;Lee, Jeongseok;Rhee, Joon-Hee
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.2
    • /
    • pp.171-184
    • /
    • 2023
  • Purpose: First, this paper suggests an alternative approach to find optimal portfolio (stocks, bonds and ESG stocks) under the maximizing utility of investors. Second, we include ESG stocks in our optimal portfolio, and compare improvement of welfares in the case with and without ESG stocks in portfolio. Methods: Our main method of analysis follows Brennan et al(2002), designed under the continuous time framework. We assume that the dynamics of stock price follow the Geometric Brownian Motion (GBM) while the short rate have the Vasicek model. For the utility function of investors, we use the Power Utility Function, which commonly used in financial studies. The optimal portfolio and welfares are derived in the partial equilibrium. The parameters are estimated by using Kalman filter and ordinary least square method. Results: During the overall analysis period, the portfolio including ESG, did not show clear welfare improvement. In 2017, it has slightly exceeded this benchmark 1, showing the possibility of improvement, but the ESG stocks we selected have not strongly shown statistically significant welfare improvement results. This paper showed that the factors affecting optimal asset allocation and welfare improvement were different each other. We also found that the proportion of optimal asset allocation was affected by factors such as asset return, volatility, and inverse correlation between stocks and bonds, similar to traditional financial theory. Conclusion: The portfolio with ESG investment did not show significant results in welfare improvement is due to that 1) the KRX ESG Leaders 150 selected in our study is an index based on ESG integrated scores, which are designed to affect stability rather than profitability. And 2) Korea has a short history of ESG investment. During the limited analysis period, the performance of stock-related assets was inferior to bond assets at the time of the interest rate drop.

Performance Analysis of Trading Strategy using Gradient Boosting Machine Learning and Genetic Algorithm

  • Jang, Phil-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.147-155
    • /
    • 2022
  • In this study, we developed a system to dynamically balance a daily stock portfolio and performed trading simulations using gradient boosting and genetic algorithms. We collected various stock market data from stocks listed on the KOSPI and KOSDAQ markets, including investor-specific transaction data. Subsequently, we indexed the data as a preprocessing step, and used feature engineering to modify and generate variables for training. First, we experimentally compared the performance of three popular gradient boosting algorithms in terms of accuracy, precision, recall, and F1-score, including XGBoost, LightGBM, and CatBoost. Based on the results, in a second experiment, we used a LightGBM model trained on the collected data along with genetic algorithms to predict and select stocks with a high daily probability of profit. We also conducted simulations of trading during the period of the testing data to analyze the performance of the proposed approach compared with the KOSPI and KOSDAQ indices in terms of the CAGR (Compound Annual Growth Rate), MDD (Maximum Draw Down), Sharpe ratio, and volatility. The results showed that the proposed strategies outperformed those employed by the Korean stock market in terms of all performance metrics. Moreover, our proposed LightGBM model with a genetic algorithm exhibited competitive performance in predicting stock price movements.

An Empirical Study on Korean Stock Market using Firm Characteristic Model (한국주식시장에서 기업특성모형 적용에 관한 실증연구)

  • Kim, Soo-Kyung;Park, Jong-Hae;Byun, Young-Tae;Kim, Tae-Hyuk
    • Management & Information Systems Review
    • /
    • v.29 no.2
    • /
    • pp.1-25
    • /
    • 2010
  • This study attempted to empirically test the determinants of stock returns in Korean stock market applying multi-factor model proposed by Haugen and Baker(1996). Regression models were developed using 16 variables related to liquidity, risk, historical price, price level, and profitability as independent variables and 690 stock monthly returns as dependent variable. For the statistical analysis, the data were collected from the Kis Value database and the tests of forecasting power in this study minimized various possible bias discussed in the literature as possible. The statistical results indicated that: 1) Liquidity, one-month excess return, three-month excess return, PER, ROE, and volatility of total return affect stock returns simultaneously. 2) Liquidity, one-month excess return, three-month excess return, six-month excess return, PSR, PBR, ROE, and EPS have an antecedent influence on stock returns. Meanwhile, realized returns of decile portfolios increase in proportion to predicted returns. This results supported previous study by Haugen and Baker(1996) and indicated that firm-characteristic model can better predict stock returns than CAPM. 3) The firm-characteristic model has better predictive power than Fama-French three-factor model, which indicates that a portfolio constructed based on this model can achieve excess return. This study found that expected return factor models are accurate, which is consistent with other countries' results. There exists a surprising degree of commonality in the factors that are most important in determining the expected returns among different stocks.

  • PDF

A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection (입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구)

  • Lee, Jong-sik;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.147-168
    • /
    • 2017
  • There have been many studies on accurate stock market forecasting in academia for a long time, and now there are also various forecasting models using various techniques. Recently, many attempts have been made to predict the stock index using various machine learning methods including Deep Learning. Although the fundamental analysis and the technical analysis method are used for the analysis of the traditional stock investment transaction, the technical analysis method is more useful for the application of the short-term transaction prediction or statistical and mathematical techniques. Most of the studies that have been conducted using these technical indicators have studied the model of predicting stock prices by binary classification - rising or falling - of stock market fluctuations in the future market (usually next trading day). However, it is also true that this binary classification has many unfavorable aspects in predicting trends, identifying trading signals, or signaling portfolio rebalancing. In this study, we try to predict the stock index by expanding the stock index trend (upward trend, boxed, downward trend) to the multiple classification system in the existing binary index method. In order to solve this multi-classification problem, a technique such as Multinomial Logistic Regression Analysis (MLOGIT), Multiple Discriminant Analysis (MDA) or Artificial Neural Networks (ANN) we propose an optimization model using Genetic Algorithm as a wrapper for improving the performance of this model using Multi-classification Support Vector Machines (MSVM), which has proved to be superior in prediction performance. In particular, the proposed model named GA-MSVM is designed to maximize model performance by optimizing not only the kernel function parameters of MSVM, but also the optimal selection of input variables (feature selection) as well as instance selection. In order to verify the performance of the proposed model, we applied the proposed method to the real data. The results show that the proposed method is more effective than the conventional multivariate SVM, which has been known to show the best prediction performance up to now, as well as existing artificial intelligence / data mining techniques such as MDA, MLOGIT, CBR, and it is confirmed that the prediction performance is better than this. Especially, it has been confirmed that the 'instance selection' plays a very important role in predicting the stock index trend, and it is confirmed that the improvement effect of the model is more important than other factors. To verify the usefulness of GA-MSVM, we applied it to Korea's real KOSPI200 stock index trend forecast. Our research is primarily aimed at predicting trend segments to capture signal acquisition or short-term trend transition points. The experimental data set includes technical indicators such as the price and volatility index (2004 ~ 2017) and macroeconomic data (interest rate, exchange rate, S&P 500, etc.) of KOSPI200 stock index in Korea. Using a variety of statistical methods including one-way ANOVA and stepwise MDA, 15 indicators were selected as candidate independent variables. The dependent variable, trend classification, was classified into three states: 1 (upward trend), 0 (boxed), and -1 (downward trend). 70% of the total data for each class was used for training and the remaining 30% was used for verifying. To verify the performance of the proposed model, several comparative model experiments such as MDA, MLOGIT, CBR, ANN and MSVM were conducted. MSVM has adopted the One-Against-One (OAO) approach, which is known as the most accurate approach among the various MSVM approaches. Although there are some limitations, the final experimental results demonstrate that the proposed model, GA-MSVM, performs at a significantly higher level than all comparative models.

Effect of Foreign Investors' Trade Amount by Nationality on Korean Stock Market (한국주식시장에 대한 국적별 외국인 투자자 거래대금의 영향)

  • Cho, Jae-Ho
    • Journal of Digital Convergence
    • /
    • v.19 no.8
    • /
    • pp.161-171
    • /
    • 2021
  • According to the equity home bias theory, foreign investors are considered to have less information than native investors. However, as the economy becomes liberalized and overseas economic innovation has a great influence on the local economy, it is possible for foreign investors to invest as informed traders. This study analyzes whether information on trade amount by nationality has specific characteristics. The findings are summarized as follows. First, the increase in trading by foreign investors has negative effects on stock returns. There is no significant difference in these negative effects by nationality. This means that foreign investors show strong herd behavior regardless of nationality. Second, foreigners' investment activities increase stock price volatility, but the impact is not significant. Third, the behavior of foreign investors is still positive feedback. However, there are signs that positive feedback behavior may be changing, especially for funds from the United States and the Cayman Islands. Finally, tax haven zone funds have different investment strategies than other foreign investors. However, Cayman Islands funds, which are estimated to be closely related to Korea, are different from Luxembourg and Ireland funds. These findings undermine the fundamentals of the equity home bias theory.

CORPORATE GOVERNANCE PRACTICE OF TAIWAN LISTED CONSTRUCTION COMPANIES AND ITS CORRELATION WITH INDUSTRIAL FEATURES

  • Hui-Yu Chou
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.413-419
    • /
    • 2011
  • Corporate governance is a system articulating the division of responsibilities among different company members, and defining the running rules and procedures for making decisions on corporate affairs. The separation of ownership and management in modern enterprises brings agency problems to the company shareholders, and it is wildly believed that good practice on corporate governance is essential to prevent managers from taking actions by which profiteering their own benefits but compromising the interests of shareholders. This research investigates the level of companies' compliance with the corporate governance codes to find whether significant differences in corporate governance practice exist between the listed construction companies and the national leading companies in Taiwan. Further exploration focuses on the correlation between the compliance level and the industrial features. The investigation finds that: (1)Construction companies display lower levels of corporate governance compliance; (2)Construction companies display lower levels of structural board independence and respect for stakeholders; (3)Compliance levels of construction companies are correlated with the number of employees and the ownership concentration; (4)Compliance levels of the whole sample companies are correlated with the factors representing firm size, such as turnover, capital and number of employees, but are independent of profitability as well as stock price volatility. The above empirical evidence characterizes the features of corporate governance in Taiwan listed construction companies, including: (1)Large companies lurking high risk of agency problems have more willingness to conduct corporate governance and meanwhile can afford higher costs for the conduction, so that their compliance level would be higher than smaller companies; (2)Construction companies in Taiwan have higher ownership concentration, on account of the industrial tradition of family business, and therefore pay less attention to the compliance with structural board independence and respect for stakeholders. However, the conclusions indicate that further studies are essential to clarify whether the above disparities would lead to a negative cycle of corporate governance practice in construction industry. The benefits of corporate governance should unfold more evidently to convince construction companies for improving their investment environment and stimulating their healthy growth.

  • PDF

Comparison of realized volatilities reflecting overnight returns (장외시간 수익률을 반영한 실현변동성 추정치들의 비교)

  • Cho, Soojin;Kim, Doyeon;Shin, Dong Wan
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.85-98
    • /
    • 2016
  • This study makes an empirical comparison of various realized volatilities (RVs) in terms of overnight returns. In financial asset markets, during overnight or holidays, no or few trading data are available causing a difficulty in computing RVs for a whole span of a day. A review will be made on several RVs reflecting overnight return variations. The comparison is made for forecast accuracies of several RVs for some financial assets: the US S&P500 index, the US NASDAQ index, the KOSPI (Korean Stock Price Index), and the foreign exchange rate of the Korea won relative to the US dollar. The RV of a day is compared with the square of the next day log-return, which is a proxy for the integrated volatility of the day. The comparison is made by investigating the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE). Statistical inference of MAE and RMSE is made by applying the model confidence set (MCS) approach and the Diebold-Mariano test. For the three index data, a specific RV emerges as the best one, which addresses overnight return variations by inflating daytime RV.

A Study on the Carbon Taxation Method Using the Real Business Cycle Model (실물적 경기변동모형을 이용한 탄소세 부과방식에 관한 연구)

  • Chung, In-sup;Jung, Yong-gook
    • Environmental and Resource Economics Review
    • /
    • v.27 no.1
    • /
    • pp.67-104
    • /
    • 2018
  • In this paper, we compare the spread effects of the carbon tax imposition method using the real business cycle model considering the productivity and energy price shocks. Scenario 1 sets the carbon tax rate that encourages the representative firm to maintain a constant $CO_2$ reduction ratio in accordance with its green house gas reduction targets for each period. Scenario 2 sets the method of imposing the steady state value of the carbon tax rate of Scenario 1 during the analysis period. The impulse response analysis shows that the responses of $CO_2$ emissions to external shocks are relatively sensitive in scenario 2. And simulation results show that the cost of $CO_2$ abatement is more volatile in scenario 1, and $CO_2$ emissions and $CO_2$ stock are more volatile in scenario 2. In particular, the percentage changes in volatility between the two scenarios of $CO_2$ emissions and $CO_2$ stock increase as the green house gas reduction target is harder. When the green house gas reduction target is 60% and over, the percentage changes(absolute value) between the two scenarios exceed the percentage change(absolute value) of the $CO_2$ reduction cost between them.