• Title/Summary/Keyword: stock price data

Search Result 397, Processing Time 0.024 seconds

The Price of Risk in the Korean Stock Distribution Market after the Global Financial Crisis (글로벌 금융위기 이후 한국 주식유통시장의 위험가격에 관한 연구)

  • Sohn, Kyoung-Woo;Liu, Won-Suk
    • Journal of Distribution Science
    • /
    • v.13 no.5
    • /
    • pp.71-82
    • /
    • 2015
  • Purpose - The purpose of this study is to investigate risk price implied from the pricing kernel of Korean stock distribution market. Recently, it is considered that the quantitative easing programs of major developed countries are contributing to a reduction in global uncertainty caused by the 2007~2009 financial crisis. If true, the risk premium as compensation for global systemic risk or economic uncertainty should show a decrease. We examine whether the risk price in the Korean stock distribution market has declined in recent years, and attempt to provide practical implications for investors to manage their portfolios more efficiently, as well as academic implications. Research design, data and methodology - To estimate the risk price, we adopt a non-parametric method; the minimum norm pricing kernel method under the LOP (Law of One Price) constraint. For the estimation, we use 17 industry sorted portfolios provided by the KRX (Korea Exchange). Additionally, the monthly returns of the 17 industry sorted portfolios, from July 2000 to June 2014, are utilized as data samples. We set 120 months (10 years) as the estimation window, and estimate the risk prices from July 2010 to June 2014 by month. Moreover, we analyze correlation between any of the two industry portfolios within the 17 industry portfolios to suggest further economic implications of the risk price we estimate. Results - According to our results, the risk price in the Korean stock distribution market shows a decline over the period of July 2010 to June 2014 with statistical significance. During the period of the declining risk price, the average correlation level between any of the two industry portfolios also shows a decrease, whereas the standard deviation of the average correlation shows an increase. The results imply that the amount of systematic risk in the Korea stock distribution market has decreased, whereas the amount of industry-specific risk has increased. It is one of the well known empirical results that correlation and uncertainty are positively correlated, therefore, the declining correlation may be the result of decreased global economic uncertainty. Meanwhile, less asset correlation enables investors to build portfolios with less systematic risk, therefore the investors require lower risk premiums for the efficient portfolio, resulting in the declining risk price. Conclusions - Our results may provide evidence of reduction in global systemic risk or economic uncertainty in the Korean stock distribution market. However, to defend the argument, further analysis should be done. For instance, the change of global uncertainty could be measured with funding costs in the global money market; subsequently, the relation between global uncertainty and the price of risk might be directly observable. In addition, as time goes by, observations of the risk price could be extended, enabling us to confirm the relation between the global uncertainty and the effect of quantitative easing. These topics are beyond our scope here, therefore we reserve them for future research.

Research model on stock price prediction system through real-time Macroeconomics index and stock news mining analysis (실시간 거시지표 예측과 증시뉴스 마이닝을 통한 주가 예측시스템 모델연구)

  • Hong, Sunghyuck
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.31-36
    • /
    • 2021
  • As the global economy stagnated due to the Corona 19 virus from Wuhan, China, most countries, including the US Federal Reserve System, introduced policies to boost the economy by increasing the amount of money. Most of the stock investors tend to invest only by listening to the recommendations of famous YouTubers or acquaintances without analyzing the financial statements of the company, so there is a high possibility of the loss of stock investments. Therefore, in this research, I have used artificial intelligence deep learning techniques developed under the existing automatic trading conditions to analyze and predict macro-indicators that affect stock prices, giving weights on individual stock price predictions through correlations that affect stock prices. In addition, since stock prices react sensitively to real-time stock market news, a more accurate stock price prediction is made by reflecting the weight to the stock price predicted by artificial intelligence through stock market news text mining, providing stock investors with the basis for deciding to make a proper stock investment.

A study on stock price prediction through analysis of sales growth performance and macro-indicators using artificial intelligence (인공지능을 이용하여 매출성장성과 거시지표 분석을 통한 주가 예측 연구)

  • Hong, Sunghyuck
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.28-33
    • /
    • 2021
  • Since the stock price is a measure of the future value of the company, when analyzing the stock price, the company's growth potential, such as sales and profits, is considered and invested in stocks. In order to set the criteria for selecting stocks, institutional investors look at current industry trends and macroeconomic indicators, first select relevant fields that can grow, then select related companies, analyze them, set a target price, then buy, and sell when the target price is reached. Stock trading is carried out in the same way. However, general individual investors do not have any knowledge of investment, and invest in items recommended by experts or acquaintances without analysis of financial statements or growth potential of the company, which is lower in terms of return than institutional investors and foreign investors. Therefore, in this study, we propose a research method to select undervalued stocks by analyzing ROE, an indicator that considers the growth potential of a company, such as sales and profits, and predict the stock price flow of the selected stock through deep learning algorithms. This study is conducted to help with investment.

Internal Control and Stock Price Informativeness about Future Earnings (내부통제와 미래이익에 대한 주가 정보성)

  • Wanglan;Hee-woo Park
    • Asia-Pacific Journal of Business
    • /
    • v.14 no.4
    • /
    • pp.255-273
    • /
    • 2023
  • Purpose - This study examines whether internal control has an effect on stock price informativeness about future earnings. High quality internal control provides continuous assurance for the quality of financial reports, and these future earnings-related information is accurately reflected in the current stock price. Design/methodology/approach - This study collected 12,862 data from 2006 to 2021 in China to make an empirical analysis using the future earnings response coefficient (FERC) and the multiple regression analysis were hired in order to analyze the data. Findings - We find that internal control strengthens the association between current returns and future earnings, indicating that more information about future earnings is reflected in current stock prices. This positive effect exists in both the main board market and the growth enterprise market of China's stock market, especially in the main board market after the implementation of the internal control policy. In addition, we find that the positive effect is weaker for firms that report internal control deficiencies or receives non unqualified internal control audit opinions. The results using earnings persistence yield similar findings, further supporting the results based on the FERC model. Research Implications or Originality - Our tests provide strong evidence that the quality of internal control affects FERC in China stock market.

The Determinants of Price Differential between Common and Preferred Stock (보통주와 우선주간의 가격괴리율 결정요인에 관한 실증분석)

  • Nam, Gi-Seok;Im, Chae-Chang
    • Management & Information Systems Review
    • /
    • v.28 no.3
    • /
    • pp.25-44
    • /
    • 2009
  • The purpose of this paper is to examine the determinants which cause a price differential between common and preferred stock. Prior studies have shown that variables like liquidity, size, the number of outstanding shares issued can explain the price differential between common and preferred stock price. Based on year 2006 through year 2008 data, we analyzed the determinants using regression model. Dummy variables representing large/small company and KSE/KOSDAQ respectively are added and analyzed as independent variables. The firm size, trade volume turnover, and the number of preferred shares to total outstanding shares were proved to make influence on the price differential under the 5% significance level. Especially, we have found the number of preferred shares to total outstanding shares provide the most strong relationship with the price differential. This means that a high ratio of preferred stock to total outstanding shares leads to relatively high value of common stock and causes a big price differential.

  • PDF

Investment Strategies for KOSPI Index Using Big Data Trends of Financial Market (금융시장의 빅데이터 트렌드를 이용한 주가지수 투자 전략)

  • Shin, Hyun Joon;Ra, Hyunwoo
    • Korean Management Science Review
    • /
    • v.32 no.3
    • /
    • pp.91-103
    • /
    • 2015
  • This study recognizes that there is a correlation between the movement of the financial market and the sentimental changes of the public participating directly or indirectly in the market, and applies the relationship to investment strategies for stock market. The concerns that market participants have about the economy can be transformed to the search terms that internet users query on search engines, and search volume of a specific term over time can be understood as the economic trend of big data. Under the hypothesis that the time when the economic concerns start increasing precedes the decline in the stock market price and vice versa, this study proposes three investment strategies using casuality between price of domestic stock market and search volume from Naver trends, and verifies the hypothesis. The computational results illustrate the potential that combining extensive behavioral data sets offers for a better understanding of collective human behavior in domestic stock market.

Deep Learning-based Stock Price Prediction Using Limit Order Books and News Headlines (호가창과 뉴스 헤드라인을 이용한 딥러닝 기반 주가 변동 예측 기법)

  • Ryoo, Euirim;Lee, Ki Yong;Chung, Yon Dohn
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.1
    • /
    • pp.63-79
    • /
    • 2022
  • Recently, various studies have been conducted on stock price prediction using machine learning and deep learning techniques. Among these studies, the latest studies have attempted to predict stock prices using limit order books, which contain buy and sell order information of stocks. However, most of the studies using limit order books consider only the trend of limit order books over the most recent period of a specified length, and few studies consider both the medium and short term trends of limit order books. Therefore, in this paper, we propose a deep learning-based prediction model that predicts stock price more accurately by considering both the medium and short term trends of limit order books. Moreover, the proposed model considers news headlines during the same period to reflect the qualitative status of the company in the stock price prediction. The proposed model extracts the features of changes in limit order books with CNNs and the features of news headlines using Word2vec, and combines these information to predict whether a particular company's stock will rise or fall the next day. We conducted experiments to predict the daily stock price fluctuations of five stocks (Amazon, Apple, Facebook, Google, Tesla) with the proposed model using the real NASDAQ limit order book data and news headline data, and the proposed model improved the accuracy by up to 17.66%p and the average by 14.47%p on average. In addition, we conducted a simulated investment with the proposed model and earned a minimum of $492.46 and a maximum of $2,840.93 depending on the stock for 21 business days.

ETF Trading Based on Daily KOSPI Forecasting Using Neural Networks (신경회로망을 이용한 KOSPI 예측 기반의 ETF 매매)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 2019
  • The application of neural networks to stock forecasting has received a great deal of attention because no assumption about a suitable mathematical model has to be made prior to forecasting and they are capable of extracting useful information from data, which is required to describe nonlinear input-output relations of stock forecasting. The paper builds neural network models to forecast daily KOrea composite Stock Price Index (KOSPI), and their performance is demonstrated. MAPEs of NN1 model show 0.427 and 0.627 in its learning and test, respectively. Based on the predicted KOSPI price, the paper proposes an alpha trading for trades in Exchange Traded Funds (ETFs) that fluctuate with the KOSPI200. The alpha trading is tested with data from 125 trade days, and its trade return of 7.16 ~ 15.29 % suggests that the proposed alpha trading is effective.

Evaluating Stock Value using Data Envelopment Analysis (자료포괄분석(DEA)을 이용한 주식의 가치 평가)

  • Kim, Bum-Seok;Kim, Myung-S.;Min, Jae-H.
    • Korean Management Science Review
    • /
    • v.28 no.3
    • /
    • pp.61-72
    • /
    • 2011
  • This study suggests a DEA(Data Envelopment Analysis) based model to evaluate the value of corporate stock. The model integrating PER(Price-Earning Ratio), PBR(Price-BookValue Ratio), PSR(Price-Sales Ratio) and volatility in DEA structure has an advantage of overcome the limitation of traditional financial ratio based models. In order to show the effectiveness of the suggested model. we compare the performance of portfolio composed by DEA approach with those of portfolios made by traditional approaches such as PER, PBR, and PSR in terms of stock return and volatility. Specifically, we use the data of all the enterprises listed on the S&P 500 in the U.S. in 2007 and 2009 as the sample data for the experiments. The results of the experiments show that the performance of the DEA approach is clearly better than those of other approaches. Particularly, in sharply plummeting market, the performance of the DEA approach is shown to be prominently better than those of other approaches as the DEA approach reflects investment risk as well as profitability and growth. The DEA score combining the existing investment indices may serve as a useful barometer for selecting a stable and profitable portfolio.

Prediction of Cryptocurrency Price Trend Using Gradient Boosting (그래디언트 부스팅을 활용한 암호화폐 가격동향 예측)

  • Heo, Joo-Seong;Kwon, Do-Hyung;Kim, Ju-Bong;Han, Youn-Hee;An, Chae-Hun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.10
    • /
    • pp.387-396
    • /
    • 2018
  • Stock price prediction has been a difficult problem to solve. There have been many studies to predict stock price scientifically, but it is still impossible to predict the exact price. Recently, a variety of types of cryptocurrency has been developed, beginning with Bitcoin, which is technically implemented as the concept of distributed ledger. Various approaches have been attempted to predict the price of cryptocurrency. Especially, it is various from attempts to stock prediction techniques in traditional stock market, to attempts to apply deep learning and reinforcement learning. Since the market for cryptocurrency has many new features that are not present in the existing traditional stock market, there is a growing demand for new analytical techniques suitable for the cryptocurrency market. In this study, we first collect and process seven cryptocurrency price data through Bithumb's API. Then, we use the gradient boosting model, which is a data-driven learning based machine learning model, and let the model learn the price data change of cryptocurrency. We also find the most optimal model parameters in the verification step, and finally evaluate the prediction performance of the cryptocurrency price trends.