Purpose - The purpose of this study is to investigate risk price implied from the pricing kernel of Korean stock distribution market. Recently, it is considered that the quantitative easing programs of major developed countries are contributing to a reduction in global uncertainty caused by the 2007~2009 financial crisis. If true, the risk premium as compensation for global systemic risk or economic uncertainty should show a decrease. We examine whether the risk price in the Korean stock distribution market has declined in recent years, and attempt to provide practical implications for investors to manage their portfolios more efficiently, as well as academic implications. Research design, data and methodology - To estimate the risk price, we adopt a non-parametric method; the minimum norm pricing kernel method under the LOP (Law of One Price) constraint. For the estimation, we use 17 industry sorted portfolios provided by the KRX (Korea Exchange). Additionally, the monthly returns of the 17 industry sorted portfolios, from July 2000 to June 2014, are utilized as data samples. We set 120 months (10 years) as the estimation window, and estimate the risk prices from July 2010 to June 2014 by month. Moreover, we analyze correlation between any of the two industry portfolios within the 17 industry portfolios to suggest further economic implications of the risk price we estimate. Results - According to our results, the risk price in the Korean stock distribution market shows a decline over the period of July 2010 to June 2014 with statistical significance. During the period of the declining risk price, the average correlation level between any of the two industry portfolios also shows a decrease, whereas the standard deviation of the average correlation shows an increase. The results imply that the amount of systematic risk in the Korea stock distribution market has decreased, whereas the amount of industry-specific risk has increased. It is one of the well known empirical results that correlation and uncertainty are positively correlated, therefore, the declining correlation may be the result of decreased global economic uncertainty. Meanwhile, less asset correlation enables investors to build portfolios with less systematic risk, therefore the investors require lower risk premiums for the efficient portfolio, resulting in the declining risk price. Conclusions - Our results may provide evidence of reduction in global systemic risk or economic uncertainty in the Korean stock distribution market. However, to defend the argument, further analysis should be done. For instance, the change of global uncertainty could be measured with funding costs in the global money market; subsequently, the relation between global uncertainty and the price of risk might be directly observable. In addition, as time goes by, observations of the risk price could be extended, enabling us to confirm the relation between the global uncertainty and the effect of quantitative easing. These topics are beyond our scope here, therefore we reserve them for future research.
As the global economy stagnated due to the Corona 19 virus from Wuhan, China, most countries, including the US Federal Reserve System, introduced policies to boost the economy by increasing the amount of money. Most of the stock investors tend to invest only by listening to the recommendations of famous YouTubers or acquaintances without analyzing the financial statements of the company, so there is a high possibility of the loss of stock investments. Therefore, in this research, I have used artificial intelligence deep learning techniques developed under the existing automatic trading conditions to analyze and predict macro-indicators that affect stock prices, giving weights on individual stock price predictions through correlations that affect stock prices. In addition, since stock prices react sensitively to real-time stock market news, a more accurate stock price prediction is made by reflecting the weight to the stock price predicted by artificial intelligence through stock market news text mining, providing stock investors with the basis for deciding to make a proper stock investment.
Since the stock price is a measure of the future value of the company, when analyzing the stock price, the company's growth potential, such as sales and profits, is considered and invested in stocks. In order to set the criteria for selecting stocks, institutional investors look at current industry trends and macroeconomic indicators, first select relevant fields that can grow, then select related companies, analyze them, set a target price, then buy, and sell when the target price is reached. Stock trading is carried out in the same way. However, general individual investors do not have any knowledge of investment, and invest in items recommended by experts or acquaintances without analysis of financial statements or growth potential of the company, which is lower in terms of return than institutional investors and foreign investors. Therefore, in this study, we propose a research method to select undervalued stocks by analyzing ROE, an indicator that considers the growth potential of a company, such as sales and profits, and predict the stock price flow of the selected stock through deep learning algorithms. This study is conducted to help with investment.
Purpose - This study examines whether internal control has an effect on stock price informativeness about future earnings. High quality internal control provides continuous assurance for the quality of financial reports, and these future earnings-related information is accurately reflected in the current stock price. Design/methodology/approach - This study collected 12,862 data from 2006 to 2021 in China to make an empirical analysis using the future earnings response coefficient (FERC) and the multiple regression analysis were hired in order to analyze the data. Findings - We find that internal control strengthens the association between current returns and future earnings, indicating that more information about future earnings is reflected in current stock prices. This positive effect exists in both the main board market and the growth enterprise market of China's stock market, especially in the main board market after the implementation of the internal control policy. In addition, we find that the positive effect is weaker for firms that report internal control deficiencies or receives non unqualified internal control audit opinions. The results using earnings persistence yield similar findings, further supporting the results based on the FERC model. Research Implications or Originality - Our tests provide strong evidence that the quality of internal control affects FERC in China stock market.
The purpose of this paper is to examine the determinants which cause a price differential between common and preferred stock. Prior studies have shown that variables like liquidity, size, the number of outstanding shares issued can explain the price differential between common and preferred stock price. Based on year 2006 through year 2008 data, we analyzed the determinants using regression model. Dummy variables representing large/small company and KSE/KOSDAQ respectively are added and analyzed as independent variables. The firm size, trade volume turnover, and the number of preferred shares to total outstanding shares were proved to make influence on the price differential under the 5% significance level. Especially, we have found the number of preferred shares to total outstanding shares provide the most strong relationship with the price differential. This means that a high ratio of preferred stock to total outstanding shares leads to relatively high value of common stock and causes a big price differential.
This study recognizes that there is a correlation between the movement of the financial market and the sentimental changes of the public participating directly or indirectly in the market, and applies the relationship to investment strategies for stock market. The concerns that market participants have about the economy can be transformed to the search terms that internet users query on search engines, and search volume of a specific term over time can be understood as the economic trend of big data. Under the hypothesis that the time when the economic concerns start increasing precedes the decline in the stock market price and vice versa, this study proposes three investment strategies using casuality between price of domestic stock market and search volume from Naver trends, and verifies the hypothesis. The computational results illustrate the potential that combining extensive behavioral data sets offers for a better understanding of collective human behavior in domestic stock market.
Recently, various studies have been conducted on stock price prediction using machine learning and deep learning techniques. Among these studies, the latest studies have attempted to predict stock prices using limit order books, which contain buy and sell order information of stocks. However, most of the studies using limit order books consider only the trend of limit order books over the most recent period of a specified length, and few studies consider both the medium and short term trends of limit order books. Therefore, in this paper, we propose a deep learning-based prediction model that predicts stock price more accurately by considering both the medium and short term trends of limit order books. Moreover, the proposed model considers news headlines during the same period to reflect the qualitative status of the company in the stock price prediction. The proposed model extracts the features of changes in limit order books with CNNs and the features of news headlines using Word2vec, and combines these information to predict whether a particular company's stock will rise or fall the next day. We conducted experiments to predict the daily stock price fluctuations of five stocks (Amazon, Apple, Facebook, Google, Tesla) with the proposed model using the real NASDAQ limit order book data and news headline data, and the proposed model improved the accuracy by up to 17.66%p and the average by 14.47%p on average. In addition, we conducted a simulated investment with the proposed model and earned a minimum of $492.46 and a maximum of $2,840.93 depending on the stock for 21 business days.
The application of neural networks to stock forecasting has received a great deal of attention because no assumption about a suitable mathematical model has to be made prior to forecasting and they are capable of extracting useful information from data, which is required to describe nonlinear input-output relations of stock forecasting. The paper builds neural network models to forecast daily KOrea composite Stock Price Index (KOSPI), and their performance is demonstrated. MAPEs of NN1 model show 0.427 and 0.627 in its learning and test, respectively. Based on the predicted KOSPI price, the paper proposes an alpha trading for trades in Exchange Traded Funds (ETFs) that fluctuate with the KOSPI200. The alpha trading is tested with data from 125 trade days, and its trade return of 7.16 ~ 15.29 % suggests that the proposed alpha trading is effective.
This study suggests a DEA(Data Envelopment Analysis) based model to evaluate the value of corporate stock. The model integrating PER(Price-Earning Ratio), PBR(Price-BookValue Ratio), PSR(Price-Sales Ratio) and volatility in DEA structure has an advantage of overcome the limitation of traditional financial ratio based models. In order to show the effectiveness of the suggested model. we compare the performance of portfolio composed by DEA approach with those of portfolios made by traditional approaches such as PER, PBR, and PSR in terms of stock return and volatility. Specifically, we use the data of all the enterprises listed on the S&P 500 in the U.S. in 2007 and 2009 as the sample data for the experiments. The results of the experiments show that the performance of the DEA approach is clearly better than those of other approaches. Particularly, in sharply plummeting market, the performance of the DEA approach is shown to be prominently better than those of other approaches as the DEA approach reflects investment risk as well as profitability and growth. The DEA score combining the existing investment indices may serve as a useful barometer for selecting a stable and profitable portfolio.
KIPS Transactions on Software and Data Engineering
/
v.7
no.10
/
pp.387-396
/
2018
Stock price prediction has been a difficult problem to solve. There have been many studies to predict stock price scientifically, but it is still impossible to predict the exact price. Recently, a variety of types of cryptocurrency has been developed, beginning with Bitcoin, which is technically implemented as the concept of distributed ledger. Various approaches have been attempted to predict the price of cryptocurrency. Especially, it is various from attempts to stock prediction techniques in traditional stock market, to attempts to apply deep learning and reinforcement learning. Since the market for cryptocurrency has many new features that are not present in the existing traditional stock market, there is a growing demand for new analytical techniques suitable for the cryptocurrency market. In this study, we first collect and process seven cryptocurrency price data through Bithumb's API. Then, we use the gradient boosting model, which is a data-driven learning based machine learning model, and let the model learn the price data change of cryptocurrency. We also find the most optimal model parameters in the verification step, and finally evaluate the prediction performance of the cryptocurrency price trends.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.