• Title/Summary/Keyword: stochastic search technique

Search Result 33, Processing Time 0.029 seconds

Optimum Structural Design of Tankers Using Multi-objective Optimization Technique (다목적함수 최적화기법을 이용한 유조선의 최적구조설계)

  • 신상훈;장창두;송하철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.591-598
    • /
    • 2002
  • In the ship structural design, the material cost of hull weight and the overall cost of construction processes should be minimized considering safety and reliability. In the past, minimum weight design has been mainly focused on reducing material cost and increasing dead weight reflect the interests of a ship's owner. But, in the past experience, the minimum weight design has been inevitably lead to increasing the construction cost. Therefore, it is necessary that the designer of ship structure should consider both structural weight and construction cost. In this point of view, multi-objective optimization technique is proposed to design the ship structure in this study. According to the proposed algorithm, the results of optimization were compared to the structural design of actual VLCC(Very Large Crude Oil Carrier). Objective functions were weight cost and construction cost of VLCC, and ES(Evolution Strategies), one of the stochastic search methods, was used as an optimization solver. For the scantlings of members and the estimations of objectives, classification rule was adopted for the longitudinal members, and the direct calculation method, GSDM(Generalized Slope Deflection Method), lot the transverse members. To choose the most economical design point among the results of Pareto optimal set, RFR(Required Freight Rate) was evaluated for each Pareto point, and compared to actual ship.

Punching Motion Generation using Reinforcement Learning and Trajectory Search Method (경로 탐색 기법과 강화학습을 사용한 주먹 지르기동작 생성 기법)

  • Park, Hyun-Jun;Choi, WeDong;Jang, Seung-Ho;Hong, Jeong-Mo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.969-981
    • /
    • 2018
  • Recent advances in machine learning approaches such as deep neural network and reinforcement learning offer significant performance improvements in generating detailed and varied motions in physically simulated virtual environments. The optimization methods are highly attractive because it allows for less understanding of underlying physics or mechanisms even for high-dimensional subtle control problems. In this paper, we propose an efficient learning method for stochastic policy represented as deep neural networks so that agent can generate various energetic motions adaptively to the changes of tasks and states without losing interactivity and robustness. This strategy could be realized by our novel trajectory search method motivated by the trust region policy optimization method. Our value-based trajectory smoothing technique finds stably learnable trajectories without consulting neural network responses directly. This policy is set as a trust region of the artificial neural network, so that it can learn the desired motion quickly.

Structural Damage Detection Using Swarm Intelligence and Model Updating Technique (군집지능과 모델개선기법을 이용한 구조물의 결함탐지)

  • Choi, Jong-Hun;Koh, Bong-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.884-891
    • /
    • 2009
  • This study investigates some of swarm intelligence algorithms to tackle a traditional damage detection problem having stiffness degradation or damage in mechanical structures. Particle swarm(PSO) and ant colony optimization(ACO) methods have been exploited for localizing and estimating the location and extent damages in a structure. Both PSO and ACO are population-based, stochastic algorithms that have been developed from the underlying concept of swarm intelligence and search heuristic. A finite element (FE) model updating is implemented to minimize the difference in a set of natural frequencies between measured and baseline vibration data. Stiffness loss of certain elements is considered to simulate structural damages in the FE model. It is numerically shown that PSO and ACO algorithms successfully completed the optimization process of model updating in locating unknown damages in a truss structure.

Discrete Optimal Design of Truss Structure Using Genetic Algorithm (GA를 이응한 트러스 구조물의 이산최적설계)

  • 황선일;조홍동;이상근;한상훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.301-308
    • /
    • 1999
  • This paper describes the application of genetic algorithm(GA) in the discrete optimal design of truss structures. Stochastic processes generate an intial population of design and then apply principles of natural selection/survival of the fittest to improve the design. GA is applied to minimum weight of truss subject to stress and displacement constraints under multiple loading conditions. First, optimum solutions obtained from GA are compared to verify the reliability of GA with m well-known transmission tower structure which is referred to by other authors. Then, discrete optimal design is performed in satisfying service conditions of truss structure with commercially available fabricated sizes. From the results, it is found that GA search technique is very effective for discrete optimal design of truss structure and has high robustness.

  • PDF

Application of GA for Optimum Design of Composite Laminated Structures (복합 적층구조의 최적설계를 위한 유전알고리즘의 적용)

  • 이상근;한상훈;구봉근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.163-170
    • /
    • 1997
  • The present paper describes an investigation into the application of the genetic algorithm(GA) in the optimization of structural design. Stochastic processes generate an initial population of designs and then apply principles of natural selection/survival of the fittest to improve the designs. The five test functions are used to verify the robustness and reliability of GA, and as a numerical example, minimum weight of a cantilever composite laminated beam with a mix of continuous, integer and discrete design variables is obtained by using GA with exterior penalty function method. The design problem has constraints on strength, displacements, and natural frequencies, and is formulated to a multidimensional nonlinear form. From the results, it is found that the GA search technique is very effective at finding the good optimum solution as well as has higher robustness.

  • PDF

Application of Bootstrap Method to Primary Model of Microbial Food Quality Change

  • Lee, Dong-Sun;Park, Jin-Pyo
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1352-1356
    • /
    • 2008
  • Bootstrap method, a computer-intensive statistical technique to estimate the distribution of a statistic was applied to deal with uncertainty and variability of the experimental data in stochastic prediction modeling of microbial growth on a chill-stored food. Three different bootstrapping methods for the curve-fitting to the microbial count data were compared in determining the parameters of Baranyi and Roberts growth model: nonlinear regression to static version function with resampling residuals onto all the experimental microbial count data; static version regression onto mean counts at sampling times; dynamic version fitting of differential equations onto the bootstrapped mean counts. All the methods outputted almost same mean values of the parameters with difference in their distribution. Parameter search according to the dynamic form of differential equations resulted in the largest distribution of the model parameters but produced the confidence interval of the predicted microbial count close to those of nonlinear regression of static equation.

Study of Supporting Location Optimization for a Structure under Non-uniform Load Using Genetic Algorithm (유전알고리즘을 이용한 비균일 하중을 받는 구조물의 지지 위치 최적화 연구)

  • Kim, G.H.;Lee, Y.S.;Kim, H.K.;Her, N.I.;Sa, J.W.;Yang, H.L.;Kim, B.C.;Bak, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1322-1327
    • /
    • 2003
  • It is important to determine supporting locations for structural stability of a structure under non-uniform load in space interfered by other parts. In this case, There are many local optima with discontinuous design space. Therefore, The traditional optimization methods based on derivative are not suitable. Whereas, Genetic algorithm(GA) based on stochastic search technique is a very robust and general method. This paper has been presented to determine supporting locations of the vertical supports for reducing stress of the KSTAR(Korea super Superconducting Tokamak Advanced Research) IVCC(In-vessel control coil) under non-uniform electromagnetic load and space interfered by other parts using genetic algorithm. For this study, we develop a program combining finite element analysis with a genetic algorithm to perform structural analysis of IVCC. In addition, this paper presents a technique to perform optimization with FEM when design variables are trapped in an incongruent design space.

  • PDF

Feature Selection and Performance Analysis using Quantum-inspired Genetic Algorithm (양자 유전알고리즘을 이용한 특징 선택 및 성능 분석)

  • Heo, G.S.;Jeong, H.T.;Park, A.;Baek, S.J.
    • Smart Media Journal
    • /
    • v.1 no.1
    • /
    • pp.36-41
    • /
    • 2012
  • Feature selection is the important technique of selecting a subset of relevant features for building robust pattern recognition systems. Various methods have been studied for feature selection from sequential search algorithms to stochastic algorithms. In this work, we adopted a Quantum-inspired Genetic Algorithm (QGA) which is based on the concept and principles of quantum computing such as Q-bits and superposition of state for feature selection. The performance of QGA is compared to that of the Conventional Genetic Algorithm (CGA) with respect to the classification rates and the number of selected features. The experimental result using UCI data sets shows that QGA is superior to CGA.

  • PDF

A Study on the Supporting Location Optimization a Structure Under Non-Uniform Load Using Genetic Algorithm (유전알고리듬을 이용한 비균일 하중을 받는 구조물의 지지위치 최적화 연구)

  • Lee Young-Shin;Bak Joo-Shik;Kim Geun-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1558-1565
    • /
    • 2004
  • It is important to determine supporting locations for structural stability when a structure is loaded with non-uniform load or supporting locations as well as the number of the supporting structures are restricted by the problem of space. Moreover, the supporting location optimization of complex structure in real world is frequently faced with discontinuous design space. Therefore, the traditional optimization methods based on derivative are not suitable Whereas, Genetic Algorithm (CA) based on stochastic search technique is a very robust and general method. The KSTAR in-vessel control coil installed in vacuum vessel is loaded with non- uniform electro-magnetic load and supporting locations are restricted by the problem of space. This paper shows the supporting location optimization for structural stability of the in-vessel control coil. Optimization has been performed by means of a developed program. It consists of a Finite Element Analysis interfaced with a Genetic Algorithm. In addition, this paper presents an algorithm to find an optimum solution in discontinuous space using continuous design variables.

Multiple Path Based Vehicle Routing in Dynamic and Stochastic Transportation Networks

  • Park, Dong-joo
    • Proceedings of the KOR-KST Conference
    • /
    • 2000.02a
    • /
    • pp.25-47
    • /
    • 2000
  • In route guidance systems fastest-path routing has typically been adopted because of its simplicity. However, empirical studies on route choice behavior have shown that drivers use numerous criteria in choosing a route. The objective of this study is to develop computationally efficient algorithms for identifying a manageable subset of the nondominated (i.e. Pareto optimal) paths for real-time vehicle routing which reflect the drivers' preferences and route choice behaviors. We propose two pruning algorithms that reduce the search area based on a context-dependent linear utility function and thus reduce the computation time. The basic notion of the proposed approach is that ⅰ) enumerating all nondominated paths is computationally too expensive, ⅱ) obtaining a stable mathematical representation of the drivers' utility function is theoretically difficult and impractical, and ⅲ) obtaining optimal path given a nonlinear utility function is a NP-hard problem. Consequently, a heuristic two-stage strategy which identifies multiple routes and then select the near-optimal path may be effective and practical. As the first stage, we utilize the relaxation based pruning technique based on an entropy model to recognize and discard most of the nondominated paths that do not reflect the drivers' preference and/or the context-dependency of the preference. In addition, to make sure that paths identified are dissimilar in terms of links used, the number of shared links between routes is limited. We test the proposed algorithms in a large real-life traffic network and show that the algorithms reduce CPU time significantly compared with conventional multi-criteria shortest path algorithms while the attributes of the routes identified reflect drivers' preferences and generic route choice behaviors well.

  • PDF