International conference on construction engineering and project management
/
2009.05a
/
pp.907-913
/
2009
Pipeline construction is a highly repetitive and resource-intensive process that is exposed to various constraints and uncertainties in the working environment. Effective look-ahead scheduling based on the most recent project performance data can greatly improve project execution and control. This study enhances the traditional linear scheduling method with stochastic simulation to incorporate activity performance uncertainty in look-ahead scheduling. To facilitate the use of this stochastic method, a computer program, Stochastic Linear Scheduling Method (SLSM), was designed and implemented. Accurate look-ahead scheduling can help schedulers to better anticipate problem areas and formulate new plans to improve overall project performance.
Journal of the military operations research society of Korea
/
v.31
no.2
/
pp.28-44
/
2005
The previous studies approach the field artillery fire scheduling problem as deterministic and do not explicitly include information on the potential scenario changes. Unfortunately, the effort used to optimize fire sequences and reduce the total time of engagement is often inefficient as the collected military intelligence changes. Instead of modeling the fire sequencing problem as deterministic model, we consider a stochastic artillery fire scheduling model and devise a solution methodology to integrate possible enemy attack scenarios in the evaluation of artillery fire sequences. The goal is to use that information to find robust solutions that withstand disruptions in a better way, Such an approach is important because we can proactively consider the effects of certain unique scheduling decisions. By identifying more robust schedules, cascading delay effects will be minimized. In this paper we describe our stochastic model for the field artillery fire sequencing problem and offer revised robust stochastic model which considers worst scenario first. The robust stochastic model makes the solution more stable than the general two-stage stochastic model and also reduces the computational cost dramatically. We present computational results demonstrating the effectiveness of our proposed method by EVPI, VSS, and Variances.
Effective job scheduling scheme is a crucial part of complex heterogeneous distributed systems. Gang scheduling is a scheduling algorithm for grid systems that schedules related grid jobs to run simultaneously on servers in different local sites. In this paper, we address grid jobs (gangs) schedule modeling using Stochastic reward nets (SRNs), which is concerned for static and dynamic scheduling policies. SRN is an extension of Stochastic Petri Net (SPN) and provides compact modeling facilities for system analysis. Threshold queue is adopted to smooth the variations of performance measures. System throughput and response time are compared and analyzed by giving reward measures in SRNs.
Shojafar, Mohammad;Pooranian, Zahra;Abawajy, Jemal H.;Meybodi, Mohammad Reza
Journal of Computing Science and Engineering
/
v.7
no.1
/
pp.44-52
/
2013
This paper addresses the problem of resource scheduling in a grid computing environment. One of the main goals of grid computing is to share system resources among geographically dispersed users, and schedule resource requests in an efficient manner. Grid computing resources are distributed, heterogeneous, dynamic, and autonomous, which makes resource scheduling a complex problem. This paper proposes a new approach to resource scheduling in grid computing environments, the hierarchical stochastic Petri net (HSPN). The HSPN optimizes grid resource sharing, by categorizing resource requests in three layers, where each layer has special functions for receiving subtasks from, and delivering data to, the layer above or below. We compare the HSPN performance with the Min-min and Max-min resource scheduling algorithms. Our results show that the HSPN performs better than Max-min, but slightly underperforms Min-min.
Journal of Korean Institute of Industrial Engineers
/
v.43
no.1
/
pp.1-11
/
2017
Stochastic resource-constrained project scheduling problem is an extension of resource-constrained project scheduling problem such that activity duration has stochastic nature. In real situation where activity duration is not known until the activity is finished, open-loop based static policies such as activity-based policy and priority-based policy will not well cope with duration variability. Then, a dynamic policy based on closed-loop decision making will be regarded as an alternative toward achievement of minimal makespan. In this study, a dynamic policy designed to select activities to start at each decision time point is illustrated. The performance of static and dynamic policies based on variable neighborhood search is evaluated under the discrete-event simulation environment. Experiments with J120 sets in PSPLIB and several probability distributions of activity duration show that the dynamic policy is superior to static policies. Even when the variability is high, the dynamic policy provides stable and good solutions.
Korean Journal of Construction Engineering and Management
/
v.6
no.1
s.23
/
pp.73-79
/
2005
This paper, introduces a Stochastic Project Scheduling Simulation system (SPSS III) developed by the author to predict a project completion probability in a certain time. The system integrates deterministic CPM, probabilistic PERT, and stochastic Discrete Event Simulation (DES) scheduling methods into one system. It implements automated statistical analysis methods for computing the minimum number of simulation runs, the significance of the difference between independent simulations, and the confidence interval for the mean project duration as well as sensitivity analysis method in What-if analyzer component. The SPSS 111 gives the several benefits to researchers in that it (1) complements PERT and Monte Carlo simulation by using stochastic activity durations via a web based JAVA simulation over the Internet, (2) provides a way to model a project network having different probability distribution functions, (3) implements statistical analyses method which enable to produce a reliable prediction of the probability of completing a project in a specified time, and (4) allows researchers to compare the outcome of CPM, PERT and DES under different variability or skewness in the activity duration data.
International conference on construction engineering and project management
/
2015.10a
/
pp.166-168
/
2015
Line of Balance (LOB) method is suitable to schedule construction projects composed of repetitive activities. Since existing LOB based repetitive project scheduling methods are deterministic, they do not lend themselves to handle uncertainties involved in repetitive construction process. Indeed, existing LOB scheduling dose not handle variability of project performance indicators. In order to bridge the gap between reality and estimation, this study provides a stochastic LOB based scheduling method that allows schedulers for effectively dealing with the uncertainties of a construction project performance. The proposed method retrieves an appropriate probability distribution function (PDF) concerning project completion times, and determines favorable start times of activities. A case study is demonstrated to verify and validate the capability of the proposed method in a repetitive construction project planning.
International conference on construction engineering and project management
/
2005.10a
/
pp.881-885
/
2005
Scheduling repetitive projects under limitations on the amounts of available resources (labor and equipment) has been an active subject because of its practical relevance. Traditionally, the limitation is specified as a deterministic (fixed) number, such as 1000 labor-hours. The limitation, however, is often exposed to uncertainty and variability, especially when the project is lengthy. This paper presents a stochastic optimization model to treat the situations where the limitations of resources are expressed as probability functions in lieu of deterministic numbers. The proposed model transfers each deterministic resource constraint into a corresponding stochastic one and then solves the problem by the use of a chance-constrained programming technique. The solution is validated by comparison with simulation results to show that it can satisfy the resource constraints with a probability beyond the desired confidence level.
The problem of scheduling n jobs on a single machine is considered when the machine is subject to stochastic breakdowns. The objective is to minimize the weighted squared deviation of job completion times from a common due date. Two versions of the problem are addressed. In the first one the common due date is a given constant, whereas in the second one the common due date is a decision variable. In each case, a general form of deterministic equivalent of the stochastic scheduling problem is obtained when the counting process N(t) related to the machine uptimes is a Poisson process. It is proved that an optimal schedule must be V-shaped in terms of weighted processing time when the agreeable weight condition is satisfied. Based on the V-shape property, two dynamic programming algorithms are proposed to solve both versions of the problem.
International Journal of Reliability and Applications
/
v.4
no.1
/
pp.13-26
/
2003
This paper presents a comparative study of a few commonly used maintenance scheduling methods for small utilities that consists solely of thermal generating plants. Two deterministic methods and a stochastic method are examined. The deterministic methods employ the leveling of reserve capacity criterion, of which one uses a heuristic rule to level the deterministic equivalent load obtained by using the product of the unit capacity and its corresponding forced outage rate. The stochastic method simulates the leveling of risk criterion by using the peak load carry capacity of available units. The results indicate that for the size and type of the maintenance scheduling problem described In this study, the stochastic method does not produce a schedule which is significantly better than the deterministic methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.