• Title/Summary/Keyword: stochastic earthquake

Search Result 114, Processing Time 0.024 seconds

Cost Effectiveness Evaluation of Seismic Isolated Bridges in Low and Moderate Seismic Region (중약진 지역에서의 지진격리교량의 비용효율성 평가)

  • 고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.440-447
    • /
    • 2000
  • In order to evaluate the cost effectiveness of seismic isolation for bridges in low and moderate seismic region, a method of calculation minimum life-cycle cost of seismic-isolated bridges under specific acceleration level and soil condition is developed. Input ground motion is modeled as spectral density function compatible with response spectrum for combination of acceleration coefficient and site coefficient. Failure probability is calculated by spectrum analysis based on random vibration theories to simplify repetitive calculations in the minimization procedure. Ductility of piers and its effects on cost effectiveness are considered by stochastic linearization method. Cost function and cost effectiveness index are defined by taking into consideration the characteristics of seismic isolated bridges. Limit states for calculation of failure probability are defined on superstructure, isolator and pier, respectively. The results of example design and analysis show that seismic isolation is more cost-effective in low and moderate seismic region than in high seismic region.

  • PDF

Optimal Design of Integrated Control System Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 복합제어시스템의 최적설계)

  • Park, Kwan-Soon;Park, Jang-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.57-64
    • /
    • 2012
  • For the vibration control of earthquake-excited buildings, an optimal design method of integrated control system considering soil-structure interaction is studied in this paper. Interaction between soils and the base of the building is simply modeled as lumped parameters and equations of motion are derived. The equations of motion are transformed into the state space equations and the probabilistic excitations such as Kanai-Tajumi power spectral density function is introduced. Then an optimization problem is formulated as finding hybrid or integrated control systems which minimizes the stochastic responses of the building structure for given constraints. In order to investigate the feasibility of the optimization method, an example design and numerical simulations are performed with tenstory building. Finally, numerical results are compared with a conventional design case that soil-structure interaction is not considered.

A Study on the Optimum Design of Base Isolated Structures (I) (면진 구조물의 최적설계에 관한 연구(I))

  • 정정훈;김병현;양용진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.339-347
    • /
    • 2001
  • A probabilistic optimum design method of the base isolation system consisting of linear spring, viscous damper and frictional element is presented. For the probabilistic approach, the base excitation is assumed to be a stationary Gaussian filtered random process. For optimum design, the objective function and constraints are derived based on the stochastic responses of the system. As a numerical example, the optimum design problem of a three-story base isolated shear type structure is formulated and solved by the sequential quadratic programming method. As a result, the effects of variation of design variables such as parameters of the base isolation system and the mass of base on the objective function and constraints are investigated and the optimum parameters of the base isolation system under study are derived.

  • PDF

Equivalent linearization of friction damper and brace system based on peak distribution (응답의 피크분포에 기초한 마찰감쇠기의 등가선형화)

  • Park, Ji-Hun;Min, Kyung-Won;Moon, Byoung-Wook
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.437-444
    • /
    • 2005
  • An equivalent linearization technique based on Rayleigh peak distribution for friction damper and brace system (FDBS) under stochastic excitation is proposed. For verification, shaking table test of a small scale 3-story building model with the FDBS is conducted for various slip moment levels. Using experimental result, equivalent linearization of the FDBS is conducted based on Rayleigh peak distribution, which is compared with measured peak distribution. For comparative study, model updating technique is applied based on identified modal properties. Finally, complex modal analysis and time history analysis for the obtained equivalent linear systems are conducted and compared with experimental result.

  • PDF

Reliability-based fragility analysis of nonlinear structures under the actions of random earthquake loads

  • Salimi, Mohammad-Rashid;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.75-84
    • /
    • 2018
  • This study presents the reliability-based analysis of nonlinear structures using the analytical fragility curves excited by random earthquake loads. The stochastic method of ground motion simulation is combined with the random vibration theory to compute structural failure probability. The formulation of structural failure probability using random vibration theory, based on only the frequency information of the excitation, provides an important basis for structural analysis in places where there is a lack of sufficient recorded ground motions. The importance of frequency content of ground motions on probability of structural failure is studied for different levels of the nonlinear behavior of structures. The set of simulated ground motion for this study is based on the results of probabilistic seismic hazard analysis. It is demonstrated that the scenario events identified by the seismic risk differ from those obtained by the disaggregation of seismic hazard. The validity of the presented procedure is evaluated by Monte-Carlo simulation.

Decision of the Proper Damper Locations Using Stochastic Seismic Responses (확률적 지진 응답을 이용한 점탄성 감쇠기의 적정설치 위치선정에 관한 연구)

  • 김진구
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.147-154
    • /
    • 1999
  • This paper presents a procedure for the frequency-domain analysis of a non-proportionally damped structure subjected to stationary seismic loads and for the finding of proper damper locations through simple analysis procedure without iteration. The shear areas of the dampers are decided in proportion to the magnitude of the components of the primary mode shape vector and to the root mean square values of the story drifts, The root-mean-squear responses are obtained using a power spectral density function for the ground acceleration. the results are compared with those obtained from damper placement decided in sequency based on the maximum story drift. According to the results the reliability of the proposed method turns out to be satisfactory compared to the methods which required iteration.

  • PDF

1D Probabilistic Ground Response Analysis (지반 구조의 불확실성이 고려된 1차원 확률론적 지반응답해석)

  • Hwang, Hea Jin;Park, Hyung Choon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.73-78
    • /
    • 2014
  • In this paper, the stochastic 1D site response analysis method using Monte Carlo simulation and considering thespatial variation of shear wave velocity profile isproposed. To consider thespatial variation of shear wave velocity profile for 1D site response analysis, the proposed method generates random shear wave velocity profiles representing the target site, and Monte Carlo simulation is used to calculate theprobability distribution of the site response analysis results such as thepeak ground acceleration. Through the field application, The applicability of the proposed method is verified through field application.

Structural redundancy of 3D RC frames under seismic excitations

  • Massumi, Ali;Mohammadi, Ramin
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.15-36
    • /
    • 2016
  • The components of the seismic behavior factor of RC frames are expected to change as structural redundancy increases. Most researches indicate that increasing redundancy is desirable in response to stochastic events such as earthquake loading. The present paper investigated the effect of redundancy on a fixed plan for seismic behavior factor components and the nonlinear behavior of RC frames. The 3D RC moment resistant frames with equal lateral resistance were designed to examine the role of redundancy in earthquake-resistant design and to distinguish it from total overstrength capacity. The seismic behavior factor and dynamic behavior of structures under natural strong ground motions were numerically evaluated as the judging criteria for structural seismic behavior. The results indicate that increasing redundancy alone in a fixed plan cannot be defined as a criterion for improving the structural seismic behavior.

Dynamic analysis of structure/foundation systems

  • Penzien, Joseph
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.281-290
    • /
    • 2004
  • A review of current procedures being used in engineering practice to analyze the response of structure/foundation systems subjected separately to different types of dynamic excitation, such as earthquake, sea-wave action, wind, or moving wheel loads, is presented. Separate formulations are given for analyzing systems in the time and frequency domains. Both deterministic and stochastic forms of excitation are treated. A distinction is made between demand and capacity analyses.

Development of Neural-Networks-based Model for the Fourier Amplitude Spectrum and Parameter Identification in the Generation of an Artificial Earthquake (인공 지진 생성에서 Fourier 진폭 스펙트럼과 변수 추정을 위한 신경망 모델의 개발)

  • 조빈아;이승창;한상환;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.439-446
    • /
    • 1998
  • One of the most important roles in the nonlinear dynamic structural analysis is to select a proper ground excitation, which dominates the response of a structure. Because of the lack of recorded accelerograms in Korea, a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms is necessarily required. If all information is not available at site, the information from other sites with similar features can be used by the procedure of seismic hazard analysis. Eliopoulos and Wen identified the parameters of the ground motion model by the empirical relations or expressions developed by Trifunac and Lee. Because the relations used in the parameter identification are largely empirical, it is required to apply the artificial neural networks instead of the empirical model. Additionally, neural networks have the advantage of the empirical model that it can continuously re-train the new recorded data, so that it can adapt to the change of the enormous data. Based on the redefined traditional processes, three neural-networks-based models (FAS_NN, PSD_NN and INT_NN) are proposed to individually substitute the Fourier amplitude spectrum, the parameter identification of power spectral density function and intensity function. The paper describes the first half of the research for the development of Neural-Networks-based model for the generation of an Artificial earthquake and a Response Spectrum(NNARS).

  • PDF