• 제목/요약/키워드: stochastic diffusion

검색결과 66건 처리시간 0.034초

스토캐스틱 분자동역학 시뮬레이션을 통한 직사각형 마이크로 채널 내의 입자 확산 연구 (STOCHASTIC MOLECULAR DYNAMICS SIMULATION OF PARTICLE DIFFUSION IN RECTANGULAR MICROCHANNELS)

  • 김영록;박철우;김대중
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.204-207
    • /
    • 2008
  • Stochastic molecular dynamics simulation is a variation of standard molecular dynamics simulation that basically omits water molecules. The omission of water molecules, occupying a majority of space, enables flow simulation at microscale. This study reports our stochastic molecular dynamics simulation of particles diffusing in rectangular microchannels. We interestingly found that diffusion patterns in channels with a very small aspect ratio differ by dimensions. We will also discuss the future direction of our research toward a more realistic simulation of micromixing.

  • PDF

스토캐스틱 분자동역학 시뮬레이션을 통한 직사각형 마이크로 채널 내의 입자 확산 연구 (STOCHASTIC MOLECULAR DYNAMICS SIMULATION OF PARTICLE DIFFUSION IN RECTANGULAR MICROCHANNELS)

  • 김영록;박철우;김대중
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.204-207
    • /
    • 2008
  • Stochastic molecular dynamics simulation is a variation of standard molecular dynamics simulation that basically omits water molecules. The omission of water molecules, occupying a majority of space, enables flow simulation at microscale. This study reports our stochastic molecular dynamics simulation of particles diffusing in rectangular microchannels. We interestingly found that diffusion patterns in channels with a very small aspect ratio differ by dimensions. We will also discuss the future direction of our research toward a more realistic simulation of micromixing.

  • PDF

CONSTRUCTION OF SOME PROCESSES ON THE WIENER SPACE ASSOCIATED TO SECOND ORDER OPERATORS

  • Cruzeiro, A.B.
    • 대한수학회지
    • /
    • 제38권2호
    • /
    • pp.311-319
    • /
    • 2001
  • We show that it is possible to associate diffusion processes to second order perturbations of the Ornstein-Uhlenbeck operator L on the Wiener space of the form L = L + 1/2∑L$^2$(sub)ξ(sub)$\kappa$ where the ξ(sub)$\kappa$ are "tangent processes" (i.e., semimartingales with antisymmetric diffusion coefficients).

  • PDF

THE APPLICATION OF STOCHASTIC DIFFERENTIAL EQUATIONS TO POPULATION GENETIC MODEL

  • Choi, Won;Choi, Dug-Hwan
    • 대한수학회보
    • /
    • 제40권4호
    • /
    • pp.677-683
    • /
    • 2003
  • In multi-allelic model $X\;=\;(x_1,\;x_2,\;\cdots\;,\;x_d),\;M_f(t)\;=\;f(p(t))\;-\;{\int_0}^t\;Lf(p(t))ds$ is a P-martingale for diffusion operator L under the certain conditions. In this note, we examine the stochastic differential equation for model X and find the properties using stochastic differential equation.

Bayes and Sequential Estimation in Hilbert Space Valued Stochastic Differential Equations

  • Bishwal, J.P.N.
    • Journal of the Korean Statistical Society
    • /
    • 제28권1호
    • /
    • pp.93-106
    • /
    • 1999
  • In this paper we consider estimation of a real valued parameter in the drift coefficient of a Hilbert space valued Ito stochastic differential equation. First we consider observation of the corresponding diffusion in a fixed time interval [0, T] and prove the Bernstein - von Mises theorem concerning the convergence of posterior distribution of the parameter given the observation, suitably normalised and centered at the MLE, to the normal distribution as Tlongrightarrow$\infty$. As a consequence, the Bayes estimator of the drift parameter becomes asymptotically efficient and asymptotically equivalent to the MLE as Tlongrightarrow$\infty$. Next, we consider observation in a random time interval where the random time is determined by a predetermined level of precision. We show that the sequential MLE is better than the ordinary MLE in the sense that the former is unbiased, uniformly normally distributed and efficient but is latter is not so.

  • PDF

Stochastic optimal control of coupled structures

  • Ying, Z.G.;Ni, Y.Q.;Ko, J.M.
    • Structural Engineering and Mechanics
    • /
    • 제15권6호
    • /
    • pp.669-683
    • /
    • 2003
  • The stochastic optimal nonlinear control of coupled adjacent building structures is studied based on the stochastic dynamical programming principle and the stochastic averaging method. The coupled structures with control devices under random seismic excitation are first condensed to form a reduced-order structural model for the control analysis. The stochastic averaging method is applied to the reduced model to yield stochastic differential equations for structural modal energies as controlled diffusion processes. Then a dynamical programming equation for the energy processes is established based on the stochastic dynamical programming principle, and solved to determine the optimal nonlinear control law. The seismic response mitigation of the coupled structures is achieved through the structural energy control and the dimension of the optimal control problem is reduced. The seismic excitation spectrum is taken into account according to the stochastic dynamical programming principle. Finally, the nonlinear controlled structural response is predicted by using the stochastic averaging method and compared with the uncontrolled structural response to evaluate the control efficacy. Numerical results are given to demonstrate the response mitigation capabilities of the proposed stochastic optimal control method for coupled adjacent building structures.

SOME SYMMETRY PRESERVING TRANSFORMATION IN POPULATION GENETICS

  • Choi, Won
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.757-762
    • /
    • 2009
  • In allelic model $X\;=\;(x_1,\;x_2,\;{\cdots},\;x_d)$, $$M_f(t)\;=\;f(p(t))\;-\;{\int}^t_0\;Lf(p(t))ds$$ is a P-martingale for diffusion operator L under the certain conditions. We can also obtain a new diffusion operator $L^*$ for diffusion coefficient and we prove that unique solution for $L^*$-martingale problem exists. In this note, we define new symmetric preserving transformation. Uniqueness for martingale problem and symmetric property will be proved.

  • PDF

Computation of viscoelastic flow using neural networks and stochastic simulation

  • Tran-Canh, D.;Tran-Cong, T.
    • Korea-Australia Rheology Journal
    • /
    • 제14권4호
    • /
    • pp.161-174
    • /
    • 2002
  • A new technique for numerical calculation of viscoelastic flow based on the combination of Neural Net-works (NN) and Brownian Dynamics simulation or Stochastic Simulation Technique (SST) is presented in this paper. This method uses a "universal approximator" based on neural network methodology in combination with the kinetic theory of polymeric liquid in which the stress is computed from the molecular configuration rather than from closed form constitutive equations. Thus the new method obviates not only the need for a rheological constitutive equation to describe the fluid (as in the original Calculation Of Non-Newtonian Flows: Finite Elements St Stochastic Simulation Techniques (CONNFFESSIT) idea) but also any kind of finite element-type discretisation of the domain and its boundary for numerical solution of the governing PDE's. As an illustration of the method, the time development of the planar Couette flow is studied for two molecular kinetic models with finite extensibility, namely the Finitely Extensible Nonlinear Elastic (FENE) and FENE-Peterlin (FENE-P) models.P) models.