SOME SYMMETRY PRESERVING TRANSFORMATION IN POPULATION GENETICS

  • Choi, Won (Department of Mathematics, University of Incheon)
  • Published : 2009.05.31

Abstract

In allelic model $X\;=\;(x_1,\;x_2,\;{\cdots},\;x_d)$, $$M_f(t)\;=\;f(p(t))\;-\;{\int}^t_0\;Lf(p(t))ds$$ is a P-martingale for diffusion operator L under the certain conditions. We can also obtain a new diffusion operator $L^*$ for diffusion coefficient and we prove that unique solution for $L^*$-martingale problem exists. In this note, we define new symmetric preserving transformation. Uniqueness for martingale problem and symmetric property will be proved.

Keywords

References

  1. S.N.Either, A class of degenerate diffusion processes occurring in population genetics, Comm. Pure Appl. Math., 29 (1976), 483-493.
  2. J.H.Gillespie, Natural selection for within-generation variance in offspring number, Genetics, 76 (1974), 601-606.
  3. A.Shimizu, Stationary distribution of a diffusion process taking values in probability distributions on the partitions, Proceedings of a Workshop held in Nagoya, (1985), 100-114.
  4. D. Stroock and S. Varadhan, Multidimensional diffusion processes, Springer-Verlag, (1979).