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CONSTRUCTION OF SOME PROCESSES
ON THE WIENER SPACE ASSOCIATED
TO SECOND ORDER OPERATORS

A. B. CRUZEIRO

ABSTRACT. We show that it is possible to associate diffusion pro-
cesses to second order perturbations of the Ornstein-Uhlenbeck op-
erator L on the Wiener space of the form

1 2
[.‘.=L+§;£Ek

where the & are “tangent processes” (i.e., semimartingales with
antisymmetric diffusion coefficients).

1. Introduction and background

In the last years the development of the study of geometry of path
spaces over a Riemannian manifold ([4, 5, 3]) has shown the need to
consider variations of Wiener functionals along more general paths than
the Cameron-Martin ones traditionally used in Malliavin Calculus. In-
deed, a Cameron-Martin variation on the path space over a Riemannian
manifold corresponds to a variation on the Wiener space along a semi-
martingale whose diffusion coefficient, given by the curvature tensor of
the manifold, is antisymmetric (and therefore by Levy’s theorem, still
keeps the Wiener measure invariant under its action). More precisely
we have the following:

DEFINITION 1.1 ([3]). A tangent process on the Wiener space X is a
R4-valued semimartingale process defined on X with Ité differential

d-&, = af dzp(r) + by dr
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where o, 8 = 1,...,d, a = —aj, a'g(O) = 0, and such that £, besides
its representation as an Ité integral, can be represented in terms of a

Stratonovich integral.

Let us recall the notion of Ornstein-Uhlenbeck operator on the Wiener
space X = C([0,1]; R%). _
For a cylindrical functional F(z) = f(z{r),...,z(tm)), z € X,
0< 7 <+ < T <1, and f a smooth bounded function on R™,
the derivative operators D, . F, a = 1,...,d, 7 € [0,1], are defined by

(ct. [9])

m

D oF{z) = Z(aif)a(;n(rl), o () Lren,

i=1

and, for h € H' = {h € X : 3h € L?[0,1]},
1
(1.1) D,F = Zf D o F h*()dr.
Q
[e}

We denote by W/ the domain of D in L}, where u is the Wiener
measure. This space is the closure of the class of cylindrical functionals
with respect to the Sobolev norm

IFIY, = Eu(IFP + | DFIP),

1 1/2
|DF| = (Z/ |DT,QF|2dT)
0
o

The dual of the derivative operator in Lﬁ, namely the operator defined
for H'-valued processes u(-) by

(1.2} E#(DuF) = Eu(Fa(u))a VF € Wiqz

is called the divergence operator.

It was discovered by Gaveau and Trauber [6] the fundamental relation
between this operator and stochastic calculus: the divergence coincides
with the Skorohod integral, which is an extension for anticipative pro-
cesses of the It6 stochastic integral.

If u is a process in L2([0,1] x X) such that u, € W{ for a.a. 7, and

1 p1
E/f 1Dy |2 do dr < +o0,
0 J0

the Skorohod integral can be characterized [9] as the limit of the fol-
lowing sums (when the mesh of the corresponding partition tends to
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zero):

d(u) = lim[z _1 /TkH Uy do (2(7i 1) — 2(7k))

= Tkt~ Tk Joy

1 Thtl fThtl
—Z——f / Drusdrde].
k Tk+1 — Tk J1,, e

Under (much) stronger assumptions on « the first term of these sums
converges to the so-called Stratonovich-Skorohod integral, denoted by
fol u o dz, and one has the identity

(1.3)

1 1
1

(1.4) S(u) = f wodr — -2-/ (D + D7), dr,

0 0
where

d
DF oy, = glix}rli Z DX,
a=1

The question of describing conditions under which the Stratonovich-
Skorohod integral exists is actually a delicate one. The assumptions are
usually made via the Skorohod integral and it is required that both d(u)
and J fol (D} + D)., dr converge.

We also recall the following commutation formula:

1 .
(1.5) Dy (du) = §(Dypu) + f whdr.
0

The Ornstein-Uhlenbeck operator on the Wiener space, that we shall
denote by L [8], is defined by

(1.6) LF = —§DF.

This operator is a fundamental object in Quantum Field Theory in 141
dimensions and corresponds to the free case.
The Poincaré-type inequalities due to Krée and Meyer state that

cllLF| 2 < |D*F|lte < c2|| LF Y| re,

with ¢;, ¢z constants, 1 < p < 400, and where D? denotes the sec-
ond derivative of the functional F'. Therefore the domain of L is the
Sobolev space W3 (X). The operator L is the generator of a process, the
Ornstein-Uhlenbeck process (see [8, 9], for example). This is a station-
ary Gaussian continuous Markov process with values on X which has p
as invariant measure.



314 A. B. Cruzeiro

From its definition and the characterization of the divergence it is
easily seen how L is a second order operator. We also observe that, in
the assumption that both terms are well defined, we can write

1 1 1
(1.7) LF = —/0 D.Fodx(rt) + 5/0 (D¥ + D). D, Fdr,

the second term being responsible for the second order derivatives.

2. Second order operators associated to tangent processes

We shall consider operators on the Wiener space of the Hormander-
type form Eg where ¢ is a tangent process (see Definition 1.1) and
LeF = D¢F. We need a representation for such a derivative, in analogy
with (1.1} for Cameron-Martin vectors. Such a formula uses anticipative
calculus (since 7 — D, is not adapted) and was shown in (3] (cf. (2.3.9)):

THEOREM 2.1. Let £ be a tangent process, d;£* = agd:cﬁ (7) + badr,

such that Efol||Da(T)||p < +00 for every 1 < p < +oc and E [} ||b(7)|1?
dr < +o0o. Then W¥ is contained in the domain of D; for all p > 1 and
we have:

1
DeF = / D, oF(a® dzg + b, dr)
0

for F € WJ(X) and where the stochastic integral is taken in the sense
of Skorohod. If d;£, = af o dzp(7) + badT, we have

e

1
DeF = ] DT,&F(a'G o dzg + by d7).
0

According to the expression of the Skorohod integral, which coincides
with a divergence (see (1.4)), it is not clear a priori why the operator
ﬁg should be of second order. Let us consider the case b = 0. We have
(without specifying regularity conditions):

(2.1)

1
£ =% [ DoaFalin)dap(r
1 1
- za:/; (DT,aFag('r)) odxg(T) — %Xa:fo DDy oFay(r))dr

1 1 1
= Z[o (DT,aFag(T)) cdzp(T) — 3 Z/D DT,QFDT,ﬁa,g(T) dr.
(a3 a”ﬁ
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We have assumed continuity in time of the derivatives and used the
fact that, since a is an antisymmetric matxix, and D, gDr o = D; o D7 g,

1
Zf D, gD, o Fal(r)dr =0.
a,f 0

The operator L¢F is therefore a derivation and EEF only involves
second order derivatives.

Let us write a more explicit expression for this operator in the case
where ;&% = al o dzs(r). We have:

1
EEF = z L DrofLeFYab(r) o dzg(r)

and

"

D o(LeFY = Z/ Dy o(DeyFaf (o)) o dzg (o)
0
S
+ Y Do Fag(r).
"

Therefore,
(2.2)

1
E?F = Z./(] D-r,a(ﬁ,gF) a'g('r) o d-’Eﬁ(’T)
1
- % Z/ﬁ Dy a(LeF) Dy gag(r) dr
a.f
= ;/01 (/: DT,aDg,n,Fagf(J) odrg (cr)) al () o dzp(T)
1 1

-+ QZ,,Y/[) (/0 Da,’rFD-r,ozag’(O') o dmgr(a)) ag('r) o] d37.f(7')
+ Z /1 DT’,},FG,?(T) ag('r) o dﬂ')ﬁ(?‘)

oy 70

1 1 1 ,
2 Z /0 (]0 DT’QDU"YFGE ()0 dmﬁ’(g)) D, gal(r)dr

N
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1 1 1 ’
~3 Z /0 (/0 DU,YFDT,Qag (o) o dzp (U)) Dﬂgag('r) dr

o.f,y

1 1
-2 3 /0 D, 4 Fa2(7) Dy gal(r) dr.
o, 8y

Finally, for every F,G € [, W3 (X), we have

E\(LeF.G) = Bu(Le(PC)) - B (FLG)
= #(Fﬁfc)v

since d.£% = a> dzg(T) defines a measure preserving isomorphism on
the Wiener space. In particular, if F, G € [, W] (X),

(2.3) E,(LEF.G) = —Eu(LeF.L:G),

a property that will be used in the next paragraph.

3. Construction of the associated processes

As in (1}, where we showed the existence of flows associated to tangent
processes on the Wiener space, we look at these processes as functionals
with values on the Wiener space, £ : X — X. The gradient of £ is a
linear operator in £L{H; X) defined by

VE()(h) = Dré(e) = m “[e(a + eh) — @),

where the limit is taken in the supremum (Banach) norm and a.e. with
respect to the Wiener measure. Considering £(H; X') as a Banach space,
we can define the second gradient and proceed in the same way for higher
derivatives. Then we consider the following norms:

Vel = sup  |VI€(Ra,... hy)lix
hieH;|lhslla <1

and the corresponding Sobolev spaces W¥(X; X).

We present here a generalization of a result in {2] for operators of
the form L + (1/2)3", Ezk, where &, are tangent processes (and not
Cameron-Martin vector fields). We restrict ourselves to processes which

are martingales since the general case is a modification of the result via
Girsanov transformation, as in [2].
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THEOREM 3.1. Let {&}, dr(&)a = (ar)2 dzg(T), be a family of tan-
gent processes on the Wiener space such that

> lgeliwecx,x) < +o0, p
P

and

[I +3 f ( f (ar)5 Odwﬁ'(v))(ak)QOdwﬁ(ﬂ

ky,o
+ 2 ] ( f Odwaf(a)) - (ak)s d‘r] 1/2—1 € LYX).

Let ko € L2(X), with kg > 0 and E,ko = 1, be such that E,([|z|5 ko) <
+00.

Then there exists a probability space (Q,F, P), a process z,(:) €
C(RT; X), w € Q, and a function k; € L*(X) such that, if v denotes the
law of z,, on the space C(RT; X), we have:

1. v(z : z(0) ET) kagd,u,

2 [ flz(®)) dv(z = [ fhydp, Vt >0, for every f € L*(X);
3. [kell2qxy < ||k0||L2(x vt > 0;

4 E,(fk) = E,(fxo) + Eu [ Lfkyds for every f € [, W3(X),
where

1 2
L=L+-2—Zk;£5k.

Idea of the proof. The proof follows the lines of the proof of Theorem
1.3.1 in [2] with the modifications in the approximation procedure corre-
sponding to the fact that we deal with Wiener space valued functionals,
as in [1]. The finite dimensional approximations of the tangent processes
¢ are defined in the following way: for £ € X, we denote by m,z the
poligonal line linking the points #(k2™") for k =0,1,...,2"” and by A,
the finite o-algebra whose atoms are the dyadic intervals of length 27".
Then the orthogonal projection L([0,1]) — L*(.A,) induces the condi-
tional expectations E-** from X to a finite dimensional Gaussian space
V- We put

£ (2) = ma(E™ (§)(=)),
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where o, denotes the g-algebra based on cylinder sets supported on V;,.
It was shown in [1] that, for every p,

E, €™ < €|,

E,||lE™ ~¢|I” — 0 and

E|VIEM P < B, ||VIE|P.

It is possible to define, globally in time, solutions of the stochastic dif-
ferential equations associated to the finite-dimensional operators

n__rn 1 2
Lh=1L +2;££§?)’

where L" is the Ornstein-Uhlenbeck operator on V,, (similarly to [2]).

In passing to the limit, one of the main ingredients is that, by property
(2.3), we have the following a priori estimate for the density of the
process:

kel L2(x) < kol z¢x)-

Indeed, since %kt = L%y = Lky,

d
- Eu(k?) = 2B, (kuLhy) = 2B, (ke L) + Y By (keL3 k)
k

= —2lkeliwz — > Bu(Le kr)? < 0.
k

REMARK 3.1. Examples of tangent processes satisfying the assump-
tions of theorem 3.1 can be found in [1]. In the simplest case, one can
take the random variables ay of the form ag(z)(7) = ar(z(7)), where az
are smooth functions.

REMARK 3.2. It is possible that a Dirichlet form type approach (see
for example [7]) would also provide a process associated to £. The
Dirichlet form to be considered would be

E(u,v) = —E(Lu.v).
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