• Title/Summary/Keyword: stochastic conditions

Search Result 293, Processing Time 0.023 seconds

A CHARACTERIZATION OF GIBBS MEASURES ON /$R \times W_{0,0})^{Z^{\nu}}$ VIA STOCHASTIC CALCULUS

  • Lim, Hye-Young;Park, Yong-Moon;Yoo, Hyun-Jae
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.711-730
    • /
    • 1994
  • We consider Gibbs measures on $(R \times W_{0,0})^{Z^\nu}, W_{0,0} = {\omega \in C[0,1] : \omega(0) = \omega(1)}$, which are associated to an interaction between particles in lattice boson systems (quantum unbounded spin systems). In [4], the Gibbs measures were introduced in the study of equilibrium states of interacting lattice boson systems and were characterized by means of the equilibrium conditions. In this paper we utilize the techniques of the stochastic calculus of variations and the infinite dimensional Ito integral to derive stochastic equations which we call the equilibrium equations. We show that under appropriate conditions the equilibrium conditions and the equilibrium equations are equivalent. The lattice boson systems with superstable and regular interactions, which we studied in [4], are typical examples.

  • PDF

PERIODIC SOLUTIONS OF STOCHASTIC DELAY DIFFERENTIAL EQUATIONS AND APPLICATIONS TO LOGISTIC EQUATION AND NEURAL NETWORKS

  • Li, Dingshi;Xu, Daoyi
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1165-1181
    • /
    • 2013
  • In this paper, we consider a class of periodic It$\hat{o}$ stochastic delay differential equations by using the properties of periodic Markov processes, and some sufficient conditions for the existence of periodic solution of the delay equations are given. These existence theorems improve the results obtained by It$\hat{o}$ et al. [6], Bainov et al. [1] and Xu et al. [15]. As applications, we study the existence of periodic solution of periodic stochastic logistic equation and periodic stochastic neural networks with infinite delays, respectively. The theorem for the existence of periodic solution of periodic stochastic logistic equation improve the result obtained by Jiang et al. [7].

On the Conditionally Independent and Positive and Negative Dependence of Bivariate Stochastic Processes

  • Baek, Jong Il;Han, Kwang Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.367-379
    • /
    • 2002
  • We introduce a new concept of $\theta$ conditionally independent and positive and negative dependence of bivariate stochastic processes and their corresponding hitting times. We have further extended this theory to stronger conditions of dependence similar to those in the literature of positive and negative dependence and developed theorems which relate these conditions. Finally we are given some examples to illustrate these concepts.

THE APPLICATION OF STOCHASTIC ANALYSIS TO COUNTABLE ALLELIC DIFFUSION MODEL

  • Choi, Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.2
    • /
    • pp.337-345
    • /
    • 2004
  • In allelic model X = ($\chi_1\chi$_2ㆍㆍㆍ, \chi_d$), M_f(t) = f(p(t)) - ${{\int^t}_0}\;Lf(p(t))ds$ is a P-martingale for diffusion operator L under the certain conditions. In this note, we can show existence and uniqueness of solution for stochastic differential equation and martingale problem associated with mean vector. Also, we examine that if the operator related to this martingale problem is connected with Markov processes under certain circumstance, then this operator must satisfy the maximum principle.

A Stochastic Model of Muscle Fatigue as a Monitor of Individual Muscle Capabilities

  • Lee, Myun-W.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.6 no.1
    • /
    • pp.27-38
    • /
    • 1980
  • This paper presents the validation of a stochastic model of muscle fatigue during static muscle contractions. Forty four laboratory experiments, covering eleven test conditions for two trained subjects, were run in order to estimate fatigue and recovery rates, based on EMG observations. The validation of the model was made by comparing the model predictions to the experimental fatigue time. The validation study supports that the stochastic model of muscle fatigue accurately represents the underlying fatigue process. The study also provides support that the fatigue model can be used as a monitor of individual muscle capabilities.

  • PDF

AN EXISTENCE OF THE SOLUTION TO NEUTRAL STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS UNDER SPECIAL CONDITIONS

  • KIM, YOUNG-HO
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.1_2
    • /
    • pp.53-63
    • /
    • 2019
  • In this paper, we show the existence of solution of the neutral stochastic functional differential equations under non-Lipschitz condition, a weakened linear growth condition and a contractive condition. Furthermore, in order to obtain the existence of solution to the equation we used the Picard sequence.

CONTROLLABILITY FOR SEMILINEAR STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS WITH DELAYS IN HILBERT SPACES

  • Kim, Daewook;Jeong, Jin-Mun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.355-368
    • /
    • 2021
  • In this paper, we investigate necessary and sufficient conditions for the approximate controllability for semilinear stochastic functional differential equations with delays in Hilbert spaces without the strict range condition on the controller even though the equations contain unbounded principal operators, delay terms and local Lipschitz continuity of the nonlinear term.

CONVERGENCE OF THE EULER-MARUYAMA METHOD FOR STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY G-BROWNIAN MOTION

  • Cunxia Liu;Wen Lu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.917-932
    • /
    • 2024
  • In this paper, we deal with the Euler-Maruyama (EM) scheme for stochastic differential equations driven by G-Brownian motion (G-SDEs). Under the linear growth and the local Lipschitz conditions, the strong convergence as well as the rate of convergence of the EM numerical solution to the exact solution for G-SDEs are established.

Stochastic optimal control analysis of a piezoelectric shell subjected to stochastic boundary perturbations

  • Ying, Z.G.;Feng, J.;Zhu, W.Q.;Ni, Y.Q.
    • Smart Structures and Systems
    • /
    • v.9 no.3
    • /
    • pp.231-251
    • /
    • 2012
  • The stochastic optimal control for a piezoelectric spherically symmetric shell subjected to stochastic boundary perturbations is constructed, analyzed and evaluated. The stochastic optimal control problem on the boundary stress output reduction of the piezoelectric shell subjected to stochastic boundary displacement perturbations is presented. The electric potential integral as a function of displacement is obtained to convert the differential equations for the piezoelectric shell with electrical and mechanical coupling into the equation only for displacement. The displacement transformation is constructed to convert the stochastic boundary conditions into homogeneous ones, and the transformed displacement is expanded in space to convert further the partial differential equation for displacement into ordinary differential equations by using the Galerkin method. Then the stochastic optimal control problem of the piezoelectric shell in partial differential equations is transformed into that of the multi-degree-of-freedom system. The optimal control law for electric potential is determined according to the stochastic dynamical programming principle. The frequency-response function matrix, power spectral density matrix and correlation function matrix of the controlled system response are derived based on the theory of random vibration. The expressions of mean-square stress, displacement and electric potential of the controlled piezoelectric shell are finally obtained to evaluate the control effectiveness. Numerical results are given to illustrate the high relative reduction in the root-mean-square boundary stress of the piezoelectric shell subjected to stochastic boundary displacement perturbations by the optimal electric potential control.