• 제목/요약/키워드: stirrup effectiveness

검색결과 13건 처리시간 0.024초

고강도 철근콘크리트 보에서 스터럽 유효성의 평가 (The Estimation on the Stirrup Effectiveness of Reinforced High Strength Concrete Beams)

  • 김진근;박찬규;이영재;서원명
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.267-272
    • /
    • 1995
  • The objective of this study is to investigate the effect of concrete strength on the stirrup effectiveness factor(K) of reinforced concrete beams with stirrup based on previous test results(a/d$\geq$2.5). In the procedure of the estimation of K, it was assumed that the ultimate shear strength for beams without stirrup is equal to the concrete contribution to shear strength for beam with stirrup. A model equation for calculation the stirrup of compressive strength of concrete. It was shown that the stirrup effective factor of compressive strength of concrete. It wah shown that the stirrup effective factor is greater than 1.0 up to compressive strength 85MPa. Therefore the current ACI Code equation for predicting the shear strength and the stirrup effectiveness factor of 1.0 is conservative for nomal and high stength concrete beams with stirrup.

  • PDF

보의 전단거동에서 콘크리트 압축강도가 스터럽 유효성에 미치는 영향 (Effect of Concrete Strength on Stirrup Effectiveness in Shear Behavior of Concrete Beams)

  • 이영재;서원명;김진근;박찬규
    • 콘크리트학회지
    • /
    • 제8권6호
    • /
    • pp.173-182
    • /
    • 1996
  • 이 연구에서는 콘크리트 보의 전단거동에서 콘크리트 압축강도가 스터럽 유효성에 미치는 영향을 실험적으로 연구하였다. 이를 위하여 단며이 $300{\times}600mm$ 인 수직 스터럽이 배근되지 않은 콘크리트 보 4개와 수직 스터럽이 배근된 콘크리트 보 20개에 대하여 실험을 수행하였다. 주요 실험변수는 2종류(보통강도, 고강도)의 콘크리트 압축강도 수준과 6종류의 전단철근비이다. 실험에 앞서 주어진 단면과 가정된 재료 상수에 대하여 ACI Building Code를 사용하여 휨파괴가 유발되는 전단철근비( ${\rho}_vACI$)를 산정하였으며, 이 값을 기준으로 6종류의 전단철근비를 선택하였다. 실험결과, 스터럽이 배근되지 않은 콘크리트 보에 있어서 ACI 전단강도식의 안전율은 콘크리트의 압축강도가 증가함에 따라 감소하는 것으로 나타났다. 그러나 스터럽이 많이 배근된 고강도 콘크리트 보에서는 보통강도 콘크리트 보 이상의 안전율이 확보되는 것으로 나타나 스터럽 유효성은 고강도 콘크리트 보에서 더 큰 것으로 나타났다.

철근콘크리트보의 스터럽 효과에 관한 실험적 연구 (An Experimental Study on the Stirrup Effectiveness in Reinforced Concrete Beams)

  • 이영재;이윤영
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권1호
    • /
    • pp.205-215
    • /
    • 2005
  • 본 연구에서는 콘크리트 보의 전단거동에서 콘크리트 압축강도가 스터럽 유효성에 미치는 영향을 실험적으로 연구하였다. 전단파괴와 휨파괴가 동시에 일어나는 경계점은 대략 S=150mm부근으로 예상되며, 이때 전단철근비는 보통강도 콘크리트보에서는 $0.63{\rho}_{vmax}$ 이고, 고강도 콘크리트보에서는 $0.53{\rho}_{vmax}$로서 ACI 전단설계 산정식은 매우 안전측이라고 판단된다.

Steel-CFRP composite and their shear response as vertical stirrup in beams

  • Uriayer, Faris A.;Alam, Mehtab
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1145-1160
    • /
    • 2015
  • An experimental study was conducted for the effectiveness of steel-CFRP composite (CFRP laminates sandwiched between two steel strips) as stirrups in concrete beam to carry shearing force and comparison was made with conventional steel bar stirrups. A total numbers of 8 concrete beams were tested under four point loads. Each beam measured 1,600 mm long, 160 mm width and 240 mm depth. The beams were composed of same grade of concrete, with same amount of flexural steel but different shear reinforcements. The main variables include, type of stirrups (shape of stirrups and number of CFRP layers used in each stirrup) and number of stirrups used in shear spans. After getting on an excellent closeness between the values of ultimate shear resistance and ultimate tensile load of steel-CFRP stirrups, it could be concluded that the steel-CFRP stirrups represent the effective solution of premature failure of FRP stirrups at the bends.

Shear behaviour of RC T-beams strengthened with U-wrapped GFRP sheet

  • Panda, K.C.;Bhattacharyya, S.K.;Barai, S.V.
    • Steel and Composite Structures
    • /
    • 제12권2호
    • /
    • pp.149-166
    • /
    • 2012
  • This paper presents an experimental investigation on the performance of 2.5 m long reinforced concrete (RC) T-beams strengthened in shear using epoxy bonded glass fibre fabric. Eighteen (18) full scale, simply supported RC T-beams are tested. Nine beams are used as control beam specimens with three different stirrups spacing without glass fibre reinforced polymer (GFRP) sheet and rest nine beams are strengthened in shear with one, two, and three layers of GFRP sheet in the form of U-jacket around the web of T-beams for each type of stirrup spacing. The objective of this study is to evaluate the effectiveness, the cracking pattern and modes of failure of the GFRP strengthened RC T-beams. The test result indicates that for RC T-beams strengthened in shear with U-jacketed GFRP sheets, increase the load carrying capacity by 10-46%.

Effectiveness of diagonal shear reinforcement on reinforced concrete short beams

  • Ozturk, Hakan;Caglar, Naci;Demir, Aydin
    • Earthquakes and Structures
    • /
    • 제17권5호
    • /
    • pp.501-510
    • /
    • 2019
  • In the study, an experimental and numerical study is performed to investigate the efficiency of diagonal shear reinforcement (DSR) on reinforced concrete (RC) short beams. For this purpose, 7 RC short beam specimens were tested under a 4-point loading, and a numerical study is conducted by using finite element method. Additionally, the efficiency of addition of DSR to specimens is observed in the experimental study together with the increase in stirrup spacing. Analysis results are compared in terms of load-displacement behavior and failure modes. As a result of the study, a significant improvement both in shear and displacement capacities of the RC short beams are achieved along with addition of DSR in short beams. Moreover, it is deduced from the numerical results that increasing both the diameter and yield strength of DSR makes a significant contribution to the shear capacity and ductility of shear critical RC members.

Comparison of macrosynthetic and steel FRC shear-critical beams with similar residual flexure tensile strengths

  • Ortiz-Navas, Francisco;Navarro-Gregori, Juan;Leiva, Gabriel;Serna, Pedro
    • Structural Engineering and Mechanics
    • /
    • 제76권4호
    • /
    • pp.491-503
    • /
    • 2020
  • This study extends previous experimental research on the shear behaviour of macrosynthetic fibre-reinforced concrete beams and compares them to steel fibre-reinforced concrete beams with similar mechanical and geometrical properties. This work employed two fibre types: 60/0.9 (long/diameter) double hooked-end steel fibre and 60/85 monofilament polypropylene fibre. Beams were tested by shear loading covering parameters, such as two different cross-section widths, two shear-span-to-effective-depth ratios, two fibre types and using repetitions with and without transverse reinforcement. For quantitative comparison purposes, crack pattern evolution was studied along increasing loads levels. Effects were studied by photogrammetry, including influence of fibres on crack propagation in uncracked and dowel zones, influence of fibres on stirrup behaviour, and shear deformation or kinematics of critical shear cracks. The results evidenced similar effectiveness for both fibre types in controlling shear crack propagation and horizontal dowel cracking. Both fibres provided similar shear ductility and shear deflections. Consequently, the authors confirm that residual flexural tensile strengths are a convenient parameter for characterising the shear behaviour of fibre-reinforced concrete beams.

Shear strengthening effect by bonded GFRP strips and transverse steel on RC T-beams

  • Panda, K.C.;Bhattacharyya, S.K.;Barai, S.V.
    • Structural Engineering and Mechanics
    • /
    • 제47권1호
    • /
    • pp.75-98
    • /
    • 2013
  • This study focuses on shear strengthening performance of simply supported reinforced concrete (RC) T-beams bonded by glass fibre reinforced polymer (GFRP) strips in different configuration, orientations and transverse steel reinforcement in different spacing. Eighteen RC T-beams of 2.5 m span are tested. Nine beams are used as control beam. The stirrups are provided in three different spacing such as without stirrups and with stirrups at a spacing of 200 mm and 300 mm. Another nine beams are used as strengthened beams. GFRP strips are bonded in shear zone in U-shape and side shape with two types of orientation of the strip at $45^{\circ}$ and $90^{\circ}$ to the longitudinal axis of the beam for each type of stirrup spacing. The experimental result indicates that the beam strengthened with GFRP strips at $45^{\circ}$ orientation to the longitudinal axis of the beam are much more effective than $90^{\circ}$ orientation. Also as transverse steel increases, the effectiveness of the GFRP strips decreases.

Rapid retrofit of substandard short RC columns with buckled longitudinal bars using CFRP jacketing

  • Marina L. Moretti
    • Earthquakes and Structures
    • /
    • 제24권2호
    • /
    • pp.97-109
    • /
    • 2023
  • This experimental study investigates the effectiveness of applying carbon fiber reinforced polymer (CFRP) jackets for the retrofit of short reinforced concrete (RC) columns with inadequate transverse reinforcement and stirrup spacing to longitudinal rebar diameter equal to 12. RC columns scaled at 1/3, with round and square section, were subjected to axial compression up to failure. A damage scale is introduced for the assessment of the damage severity, which focusses on the extent of buckling of the longitudinal rebars. The damaged specimens were subsequently repaired with unidirectional CFRP jackets without any treatment of the buckled reinforcing bars and were finally re-tested to failure. Test results indicate that CFRP jackets may be effectively applied to rehabilitate RC columns (a) with inadequate transverse reinforcement constructed according to older practices so as to meet modern code requirements, and (b) with moderately buckled bars without the need of previously repairing the reinforcement bars, an application technique which may considerably facilitate the retrofit of earthquake damaged RC columns. Factors for the estimation of the reduced mechanical properties of the repaired specimens compared to the respective values for intact CFRP-jacketed specimens, in relation to the level of damage prior to retrofit, are proposed both for the compressive strength and the average modulus of elasticity. It was determined that the compressive strength of the retrofitted CFRP-jacketed columns is reduced by 90% to 65%, while the average modulus of elasticity is lower by 60% to 25% in respect to similar undamaged columns jacketed with the same layers of CFRP.

축하중이 작용하는 철근 콘크리트 경계보-벽체 시스템의 압축성능 평가 (Structural Performance of the RC Boundary Beam-Wall System Subjected to Axial Loads)

  • 한진주;손홍준;김대진
    • 한국전산구조공학회논문집
    • /
    • 제35권1호
    • /
    • pp.57-64
    • /
    • 2022
  • 본 논문에서는 전이보 시스템이 지닌 층고 및 공사물량 증가의 단점을 보완할 수 있는 경계보-벽체 시스템의 압축성능을 평가하였다. 1/2 축소실험체에 대한 압축실험을 수행하고 그 결과를 3차원 비선형 유한요소해석 결과와 비교 및 분석하였다. 실험체 변수로 상하부벽체의 수평길이 상대비, 하부벽체의 두께, 하부벽체 전단보강근의 상세를 고려하였다. 실험의 최대하중은 하부벽체의 공칭축강도와 유사하게 나타났으며, 이로부터 상부벽체로부터의 수직 하중이 하부벽체로 원활하게 전달되며, 편심으로 인한 모멘트 중 상당량을 경계보가 가져감을 알 수 있다. 상하부벽체 수평길이의 상대비가 40%일 경우 50%일 때보다 단면의 기여도가 증가하였으며, 하부벽체에 면외방향 편심이 존재할 경우 단면의 기여도가 감소하였다. 하부벽체의 전단보강근 간격을 줄이고 크로스 타이를 배근할 경우 초기강성 및 최대하중이 증가하며 국부적인 응력집중이 감소하였다.