DOI QR코드

DOI QR Code

Comparison of macrosynthetic and steel FRC shear-critical beams with similar residual flexure tensile strengths

  • Ortiz-Navas, Francisco (Instituto de Ciencia y Tecnologia del Hormigon (ICITECH), Universitat Politecnica de Valencia) ;
  • Navarro-Gregori, Juan (Instituto de Ciencia y Tecnologia del Hormigon (ICITECH), Universitat Politecnica de Valencia) ;
  • Leiva, Gabriel (Instituto de Ciencia y Tecnologia del Hormigon (ICITECH), Universitat Politecnica de Valencia) ;
  • Serna, Pedro (Instituto de Ciencia y Tecnologia del Hormigon (ICITECH), Universitat Politecnica de Valencia)
  • Received : 2019.10.11
  • Accepted : 2020.07.14
  • Published : 2020.11.25

Abstract

This study extends previous experimental research on the shear behaviour of macrosynthetic fibre-reinforced concrete beams and compares them to steel fibre-reinforced concrete beams with similar mechanical and geometrical properties. This work employed two fibre types: 60/0.9 (long/diameter) double hooked-end steel fibre and 60/85 monofilament polypropylene fibre. Beams were tested by shear loading covering parameters, such as two different cross-section widths, two shear-span-to-effective-depth ratios, two fibre types and using repetitions with and without transverse reinforcement. For quantitative comparison purposes, crack pattern evolution was studied along increasing loads levels. Effects were studied by photogrammetry, including influence of fibres on crack propagation in uncracked and dowel zones, influence of fibres on stirrup behaviour, and shear deformation or kinematics of critical shear cracks. The results evidenced similar effectiveness for both fibre types in controlling shear crack propagation and horizontal dowel cracking. Both fibres provided similar shear ductility and shear deflections. Consequently, the authors confirm that residual flexural tensile strengths are a convenient parameter for characterising the shear behaviour of fibre-reinforced concrete beams.

Keywords

Acknowledgement

This work forms part of Project "BIA2016-78460-C3-1-R" supported by the State Research Agency of Spain.

References

  1. Alani, A. M. and Beckett, D. (2013), "Mechanical properties of a large scale synthetic fibre reinforced concrete ground slab", Construct. Build. Mater., 41, 335-344. https://doi.org/10.1016/j.conbuildmat.2012.11.043.
  2. Alberti, M. G., Enfedaque, A. and Galvez, J. C. (2017), "On the prediction of the orientation factor and fibre distribution of steel and macro-synthetic fibres for fibre-reinforced concrete", Cement Concrete Compos., 77, 29-48. https://doi.org/10.1016/j.cemconcomp.2016.11.008.
  3. Alberti, M. G., Enfedaque, A., Galvez, J. C. and Agrawal, V. (2016a), "Reliability of polyolefin fibre reinforced concrete beyond laboratory sizes and construction procedures", Compos. Struct., 140, 506-524. https://doi.org/10.1016/j.compstruct.2015.12.068.
  4. Alberti, M. G., Enfedaque, A., Galvez, J. C. and Ferreras, A. (2016b), "Pull-out behaviour and interface critical parameters of polyolefin fibres embedded in mortar and self-compacting concrete matrixes", Construct. Build. Mater., 112, 607-622. https://doi.org/10.1016/j.conbuildmat.2016.02.128.
  5. Alsaif, A., Koutas, L., Bernal, S. A., Guadagnini, M. and Pilakoutas, K. (2018), "Mechanical performance of steel fibre reinforced rubberised concrete for flexible concrete pavements", Construct. Build. Mater., 172, 533-543. https://doi.org/10.1016/j.conbuildmat.2018.04.010.
  6. Altoubat, S., Ardavan, Y. and Rieder, K. (2012), "Shear strength of Beams Reinforced with Synthetic Macro-Fibers and Stirrups", Proceedings of 8th RILEM International Symposium on Fiber Reinforced Concrete: challenges and opportunities (BEFIB 2012), Guimaraes, Portugal, September.
  7. Altoubat, S., Yazdanbakhsh, A. and Rieder, K.A. (2009), "Shear behavior of macro-synthetic fiber-reinforced concrete beams without stirrups", ACI Mater. J., 106(4), 381-389.
  8. American Concrete Institute-American Society of Civil Engineers (ACI-ASCE) Joint Committee 445. (1999), Recent Approaches to Shear Design of Structural Concrete (ACI-ASCE 445R-99).
  9. Amin, A. and Foster, S. J. (2016), "Shear strength of steel fibre reinforced concrete beams with stirrups", Eng. Struct., 111, 323-332. https://doi.org/10.1016/j.engstruct.2015.12.026.
  10. Arslan, G., Ozturk, M., Secer, R. and Keskin, O. (2016), "Shear behaviour of polypropylene fibre- reinforced-concrete beams without stirrups", Proceedings of the Institution of Civil Engineers, 170(3), 190-198. https://doi.org/10.1680/jstbu.16.00202.
  11. Bazant, Z.P. and Ohtsubo, H. (1977), "Stability conditions for propagation of a system of cracks in a brittle solid", Mech. Res. Communications, 4(5), 353-366. https://doi.org/10.1016/0093-6413(77)90015-5.
  12. Bresler, B. and Scordelis, A.C. (1963), "Shear strength of reinforced concrete beams", J. American Concrete Institute, 60(1), 51-72.
  13. Buratti, N., Mazzotti, C. and Savoia, M. (2011), "Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes", Construct. Build. Mater., 25(5), 2713-2722. https://doi.org/10.1016/j.conbuildmat.2010.12.022.
  14. Chana, P.S. (2009), "Investigation of the mechanism of shear failure of reinforced concrete beams", Mag. Concrete Res., 39(141), 196-204. https://doi.org/10.1680/macr.1987.39.141.196.
  15. Conforti, A., Minelli, F. and Plizzari, G.A. (2017), "Shear behaviour of prestressed double tees in self-compacting polypropylene fibre reinforced concrete", Eng. Struct., 146, 93-104. https://doi.org/10.1016/j.engstruct.2017.05.014.
  16. Conforti, A., Minelli, F., Tinini, A. and Plizzari, G.A. (2015), "Influence of polypropylene fibre reinforcement and width-to-effective depth ratio in wide-shallow beams", Eng. Struct., 88, 12-21. https://doi.org/10.1016/j.engstruct.2015.01.037.
  17. Conforti, A., Ortiz-Navas, F., Piemonti, A. and Plizzari, G.A. (2020), "Enhancing the shear strength of hollow-core slabs by using polypropylene fibres", Eng. Struct., 207(November 2019), 110172. https://doi.org/10.1016/j.engstruct.2020.110172.
  18. Conforti, A., Tinini, A., Minelli, F., Plizzari, G. and Moro, S. (2014), "Structural applicability of polypropylene fibres: Deep and wide-shallow beams subjected to shear Experimental program", FRC 2014 joint ACI-fib International Workshop - Fibre Reinforced Concrete: from design to structural applications, 341-356.
  19. Cuenca, E. and Serna, P. (2013), "Shear behavior of prestressed precast beams made of self-compacting fiber reinforced concrete", Construct. Building Mater., 45, 145-156. https://doi.org/10.1016/j.conbuildmat.2013.03.096.
  20. Dev, A., Chellapandian, M., Prakash, S.S. and Kawasaki, Y. (2020), "Failure-mode analysis of macro-synthetic and hybrid fibre-reinforced concrete beams with GFRP bars using acoustic emission technique", Construct. Build. Mater., 249, 118737. https://doi.org/10.1016/j.conbuildmat.2020.118737.
  21. Dias-da-Costa, D., Valenca, J., Julio, E. and Araujo, H. (2017), "Crack propagation monitoring using an image deformation approach", Struct. Control Health Monitoring, 24(10), 1-14. https://doi.org/10.1002/stc.1973.
  22. Dias-da-Costa, D., Valenca, J. and Julio, E.N.B.S. (2011), "Laboratorial test monitoring applying photogrammetric post-processing procedures to surface displacements", Measurement, 44(3), 527-538. https://doi.org/https://doi.org/10.1016/j.measurement.2010.11.014.
  23. Ding, Y., You, Z. and Jalali, S. (2011), "The composite effect of steel fibres and stirrups on the shear behaviour of beams using self-consolidating concrete", Eng. Struct., 33(1), 107-117. https://doi.org/10.1016/j.engstruct.2010.09.023.
  24. Dinh, H.H., G.J. Parra-Montesinos and J.K.W. (2010), "Shear Behavior of Steel Fiber-Reinforced Concrete Beams without Stirrup Reinforcement", ACI Struct. J., 107(05) https://doi.org/10.14359/51663913.
  25. European Committee for Standardization-International Organization for Standardization. (2009), EN-ISO 6892-1-2009: Metallic materials - Tensile testing Part 1: Method of test at room temperature. European Committee for Standardization.
  26. European Committee for Standardization. (2005), EN 14651: Test method for metallic fibres concrete. Measuring the flexural tensile strength, European Committee for Standardization.
  27. European Committee for Standardization. (2009), EN 12390-3: Testing hardened concrete. Part 3: Compressive strength of test specimens, European Committee for Standardization.
  28. European Committee for Standardization. (2014), EN 12390-13: Testing hardened concrete. Part 13: Determination of secant modulus of elasticity in compression, European Committee for Standardization.
  29. Fenwick, R. and Pauley, T. (1968), "Mechanism of shear resistance of concrete beams", J. Struct. Division, 94(10), 25.
  30. Greenough, T. and Nehdi, M. (2008), "Shear behavior of fiber-reinforced self-consolidating concrete slender beams", ACI Mater. J., 105(5), 468-477.
  31. International Federation for Structural Concrete (fib). (2013), Model Code 2010, final drafts., FIB bulletin, Wilhelm Ernst and Sohn, Hoboken, NJ, USA.
  32. Jean-Francois Trottier and Dean Forgeron, M.M. (2002), "Can Synthetic Fibers Replace Welded-Wire Mesh in Slabs-on-Ground?", Concrete International, 24(11).
  33. Kotecha, P. and Abolmaali, A. (2019), "Macro synthetic fibers as reinforcement for deep beams with discontinuity regions: Experimental investigation", Eng. Struct., 200(August), 109672. https://doi.org/10.1016/j.engstruct.2019.109672.
  34. Lequesne, R. D., Parra-Montesinos, G. J. and Wight, J. K. (2013), "Seismic behavior and detailing of high-performance fiber-reinforced concrete coupling beams and coupled wall systems", J. Struct. Eng., 139(8), 1362-1370. https://doi.org/10.1061/(asce)st.1943-541x.0000687.
  35. Ortiz Navas, F., Navarro-Gregori, J., Leiva Herdocia, G., Serna, P. and Cuenca, E. (2018), "An experimental study on the shear behaviour of reinforced concrete beams with macro-synthetic fibres", Construct. Building Mater., 169, 888-899. https://doi.org/10.1016/j.conbuildmat.2018.02.023.
  36. Panda, S. S. and Gangolu, A. R. (2017), "Study of dowel action in reinforced concrete beam by factorial design of experiment", ACI Struct. J., 114(6), 1495-1505. https://doi.org/10.14359/51700831.
  37. Di Prisco, M., Plizzari, G. and Vandewalle, L. (2010), "MC2010: Overview on the shear provisions for FRC", Workshop SALO, 61-76, Lake Garda, October.
  38. Di Prisco, M., Tomba, S., Bonalumi, P. and Meda, A. (2015), "On the use of macro synthetic fibres in precast tunnel segments", Proceedings of the International Conference FIBRE CONCRETE, Prague, September.
  39. Pujadas, P., Blanco, A., Cavalaro, S. H.P., Aguado, A., Grunewald, S., Blom, K. and Walraven, J.C. (2014), "Plastic fibres as the only reinforcement for flat suspended slabs: Parametric study and design considerations", Construct. Build. Mater., 70, 88-96. https://doi.org/10.1016/j.conbuildmat.2014.07.091.
  40. Qissab, M. A. and Salman, M.M. (2018), "Shear strength of non-prismatic steel fiber reinforced concrete beams without stirrups", Struct. Eng. Mech., 67(4), 347-358. https://doi.org/10.12989/sem.2018.67.4.347.
  41. Regan, P. E. (1993), "Research on shear: A benefit to humanity or a waste of time?", The Structural Engineer, 71, 337-347.
  42. Roesler, J.R., Altoubat, S.A., Lange, D.A., Rieder, K.A. and Ulreich, G.R. (2006), "Effect of synthetic fibers on structural behavior of concrete slabs-on-ground", ACI Mater. J., 103(1), 3-10. https://doi.org/10.14359/15121.
  43. Simoes, T., Costa, H., Dias-da-costa, D. and Julio, E. (2017), "Influence of fibres on the mechanical behaviour of fibre reinforced concrete matrixes" 137, 548-556. https://doi.org/10.1016/j.conbuildmat.2017.01.104.
  44. Swamy, R.N. and Bahia, H.M. (1978), "Influence of fiber reinforcement on the dowel resistance to shear", J. Am. Concr. Inst., 76(2).
  45. Swamy, R.N. and Bahia, H.M. (1985), "The Effectiveness of Steel Fibers as Shear Reinforcement", Concrete International, 7(3).
  46. Tiberti, G., Conforti, A. and Plizzari, G.A. (2015), "Precast segments under TBM hydraulic jacks: Experimental investigation on the local splitting behavior", Tunnelling Underground Space Technol., 50, 438-450. https://doi.org/10.1016/j.tust.2015.08.013.
  47. Watanabe, K., Kimura, T. and Niwa, J. (2010), "Synergetic effect of steel fibers and shear-reinforcing bars on the shear-resistance mechanisms of RC linear members", Construct. Build. Mater., 24(12), 2369-2375. https://doi.org/10.1016/j.conbuildmat.2010.05.009.
  48. Yang, Y. (2014), "Shear Behaviour of Reinforced Concrete Members without Shear Reinforcement A New Look at an Old Problem", Ph.D. Dissertation, Delft University of Technology.
  49. Kwak, Y.K., Kim, W., Eberhard, M. and Kim, J. (2002), "Shear strength of steel fiber-reinforced concrete beams without stirrups", ACI Struct. J., 99(4), https://doi.org/10.14359/12122.
  50. Zarrinpour, M.R. and Chao, S.H. (2017), "Shear Strength Enhancement Mechanisms of Steel Fiber-Reinforced Concrete Slender Beams", ACI Struct. J., 114(3), 729-742. https://doi.org/10.14359/51689449.

Cited by

  1. An Experimental Study of Shear Resistance for Multisize Polypropylene Fiber Concrete Beams vol.15, pp.1, 2020, https://doi.org/10.1186/s40069-021-00492-7