• Title/Summary/Keyword: stiffness tensor

Search Result 15, Processing Time 0.024 seconds

Determination of the elastic properties in CFRP composites: comparison of different approaches based on tensile tests and ultrasonic characterization

  • Munoz, Victor;Perrin, Marianne;Pastor, Marie-Laetitia;Welemane, Helene;Cantarel, Arthur;Karama, Moussa
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.249-261
    • /
    • 2015
  • The mechanical characterization of composite materials is nowadays a major interest due to their increasing use in the aeronautic industry. The design of most of these materials is based on their stiffness, which is mainly obtained by means of tensile tests with strain gauge measurement. For thin laminated composites, this classical method requires adequate samples with specific orientation and does not provide all the independent elastic constants. Regarding ultrasonic characterization, especially immersion technique, only one specimen is needed and the entire determination of the stiffness tensor is possible. This paper presents a study of different methods to determine the mechanical properties of transversely isotropic carbon fibre composite materials (gauge and correlation strain measurement during tensile tests, ultrasonic immersion technique). Results are compared to ISO standards and manufacturer data to evaluate the accuracy of these techniques.

Homogenization based continuum damage mechanics model for monotonic and cyclic damage evolution in 3D composites

  • Jain, Jayesh R.;Ghosh, Somnath
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.279-301
    • /
    • 2008
  • This paper develops a 3D homogenization based continuum damage mechanics (HCDM) model for fiber reinforced composites undergoing micromechanical damage under monotonic and cyclic loading. Micromechanical damage in a representative volume element (RVE) of the material occurs by fiber-matrix interfacial debonding, which is incorporated in the model through a hysteretic bilinear cohesive zone model. The proposed model expresses a damage evolution surface in the strain space in the principal damage coordinate system or PDCS. PDCS enables the model to account for the effect of non-proportional load history. The loading/unloading criterion during cyclic loading is based on the scalar product of the strain increment and the normal to the damage surface in strain space. The material constitutive law involves a fourth order orthotropic tensor with stiffness characterized as a macroscopic internal variable. Three dimensional damage in composites is accounted for through functional forms of the fourth order damage tensor in terms of components of macroscopic strain and elastic stiffness tensors. The HCDM model parameters are calibrated from homogenization of micromechanical solutions of the RVE for a few representative strain histories. The proposed model is validated by comparing results of the HCDM model with pure micromechanical analysis results followed by homogenization. Finally, the potential of HCDM model as a design tool is demonstrated through macro-micro analysis of monotonic and cyclic damage progression in composite structures.

Modeling of a bearingless motor using distributed magnetic circuit (분산 자기 회로를 이용한 베어링리스 모터의 모델링)

  • 박창용;박수진;노명규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.212-216
    • /
    • 2004
  • Bearingless motors are the rotational electric machine which utilize a common magnetic structure for rotation and magnetic suspension. Since the bearing function is combined with the motor, the shaft length can be shortened resulting in higher critical speeds. Relationship between suspension force and current of bearingless motor is clearly derived by prior research. However, relationship between displacement of rotor and suspension force is not precisely defined. In this paper, we present model of bearingless motor describing the radial force variation due to the movement of the rotor. Using a distributed magnetic circuit and maxwell stress tensor, we derived a mathematical expression for the radial force. For a slotless bearingless motor, we are able to find an analytical model presented in the form of stiffness. For a slotted motor, we can compute the stiffness by semi-analytical analysis. This model is validated by a finite-element-analysis.

  • PDF

An Analytical Study on Prediction of Effective Properties n Porous and Non-Porous Piezoelectric Composites

  • Lee Jae-Kon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2025-2031
    • /
    • 2005
  • Eshelby type micro mechanics model with a newly developed piezoelectric Eshelby tensor is proposed for predicting the effective electroelastic properties of the piezoelectric composite. The model is applied for piezoelectric solids containing both porosities and metal inhomogeneities. The effective electroelastic moduli of the composites such as stiffness, piezoelectric constants, and dielectric constants are predicted by the present model, which are extensively compared with the existing experimental results from the literatures. The validity of Eshelby type model for predicting the effective properties of the composite is thoroughly examined. It can be concluded from this study that a new mechanism is needed to compute correctly the dielectric constants among the effective properties of the composites.

The Effects of the FIFA 11+ and Self-Myofascial Release Complex Training on Injury, Flexibility and Muscle Stiffness of High School Football Players

  • Choi, Young-In;Choi, Houng-Sik;Kim, Tack-Hoon;Choi, Kyu-Hwan;Kim, Gyoung-Mo;Roh, Jung-Suk
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.1
    • /
    • pp.38-44
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate the effects of complex training on injury, flexibility, and muscle stiffness in high school male football players. Methods: A total of 60 football players were included in the study and were divided into three groups viz. the complex training group (CTG), 11+ training group (11+TG), and traditional training group (TTG). Injuries were recorded based on the prospective investigation method after starting the study, and the flexibility and muscle stiffness of the subjects were evaluated. Results: The research results showed that the injury rate per match was significantly lower in the CTG and 11+TG than the TTG. In the CTG, the flexibility of the hamstrings significantly increased and the stiffness of the rectus femoris (RF), biceps femoris (BF), and tensor fascia latae (TFL) muscles significantly decreased (p<0.05). In the 11+TG, the stiffness of the RF significantly decreased (p<0.05). In the TTG, the flexibility of the hamstrings significantly increased (p<0.05). Hamstring flexibility showed a significantly higher increase in the CTG and TTG compared to the 11+TG (p<0.05). Also, the stiffness of the RF and TFL muscles showed a significantly higher decrease in the CTG compared to the 11+TG and TTG (p<0.05). The stiffness of the BF muscles too showed a more significant decrease in the CTG compared to the TTG (p<0.05). Conclusion: The complex training method of the Fédération International de Football Association (FIFA) 11+ and self-myofascial release (SMFR) as a warm-up program, prevent injuries, enhance flexibility, and lower muscle stiffness of football players in high school. Thus, it is necessary to ensure the widespread use of the complex training program by instructors and players under the supervision of the Korea Football Association (KFA), given its reliability in preventing injuries and improving the performance of football players.

A study of surface stress effects on equilibrium states of thin nanofilm (나노박막의 표면응력에 의한 평형상태에 대한 연구)

  • Kim, Won-Bae;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.34-37
    • /
    • 2009
  • 본 논문에서는 원자적 계산(atomistic calculation)을 이용한 나노박막의 평형상태(self-equilibrium state)에 대한 해석기법을 제시한다. 두께가 얇은 나노박막은 표면 응력(surface stress)에 의한 영향으로 원자간 거리가 벌크상태의 거리보다 작아진다. 두께가 얇은 나노박막에서의 원자 사이의 거리는 표면 응력과 탄성계수들의 표현식으로 계산이 가능하며, 본 논문에서는 {100}, {111}, {110} 표면을 가지는 나노박막의 평형상태의 해석을 위한 해석적 방법을 제시한다. 원자 사이의 거리를 계산하기 위해서는 보다 정확한 표면 응력의 계산방법이 필요하다. 본 연구에서는 나노박막의 평형상태에 대한 해석을 위해 surface relaxation model을 제시하고, 이 모델을 이용하여 표면응력(surface stress)과 표면강성계수(surface stiffness tensor)와 같은 surface parameter의 계산을 수행한다. 본 논문에서 제시된 surface relaxation model을 검증하기 위하여 분자동역학 전산모사(molecular dynamics simulation)의 수치 결과를 제시하고, 본 연구에서 계산한 equilibrium strain과 비교 검증한다.

  • PDF

A damage model formulation: unilateral effect and RC structures analysis

  • Pituba, Jose J.C.
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.709-733
    • /
    • 2015
  • This work deals with a damage model formulation taking into account the unilateral effect of the mechanical behaviour of brittle materials such as concrete. The material is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity induced by damage evolution. Two damage tensors governing the stiffness in tension or compression regimes are introduced. A new damage tensor in tension regimes is proposed in order to model the diffuse damage originated in prevails compression regimes. Accordingly with micromechanical theory, the constitutive model is validate when dealing with unilateral effect of brittle materials, Finally, the proposed model is applied in the analyses of reinforced concrete framed structures submitted to reversal loading. The numerical results have shown the good performance of the modelling and its potentialities to simulate practical problems in structural engineering.

Analysis of Mechanical Behavior for a Pultruded-Wound Hollow Rod of Unsaturated Polyester Resin(UP) with Glass Fibers (인발-와인딩에 의한 불포화수지 섬유강화 중공봉의 기계적 거동해석)

  • Kim, Zoh-Gweon;Lin, Ye
    • Composites Research
    • /
    • v.14 no.6
    • /
    • pp.16-23
    • /
    • 2001
  • Analysis of mechanical behavior for a pultruded-wound hollow rod is presented. For this purpose, the pultruded-wound hollow rod is manufactured by the new winder attached to the conventional pultrusion system. And the conventional pultrusion process is newly altered to manufacture pultruded-wound specimens. A computer program, POST II, is modified to perform this study, In the nonlinear finite element formulation, the updated Lagrangian description method based on the second Piolar-Kirchhoff stress tensor and the Green strain tensor are used. For the finite element modeling of the composite hollow rod, the eight-node degenerated shell element is utilized. In order to estimate the failure, the maximum stress criterion is adopted to the averaged stress in the each layer of the finite elements. As numerical examples, the behavior of glass/up composite hollow rod is investigated from the initial loading to the final collapse. Present finite element results considering stiffness degradation and stress unload due to failure shows excellent agreement with experiments in the ultimate load, failure and deformations.

  • PDF

Measurement of High Temperature Anisotropic Elastic Constants of Zr-2.5Nb Pressure Tube Materials by Resonant Ultrasound Spectroscopy (초음파공명분광법에 의한 Zr-2.5Nb 압력관 재료의 고온 이방성 탄성계수 측정)

  • Cheong, Yong-Moo;Kim, Sung-Soo;Kim, Young-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.140-148
    • /
    • 2002
  • Anisotropic elastic constants of Zr-2.5Nb pressure tube materials were determined by a high temperature resonant ultrasound spectroscopy (RUS). The resonant frequencies were measured using alumina wave-guides and wide band ultrasonic transducers in a small furnace. The rectangular parallelepiped specimens were fabricated along with the axial, radial and circumferential direction of the pressure tube. A nine elastic stiffness tensor for orthotropic symmetry was determined in the range of room temperature ${\sim}500^{\circ}C$. As the temperature increases, the elastic constant tensor, cij gradually decreases. Higher elastic constants along the transverse direction compared to those along the axial or radial direction are similar to the case of Young's modulus or shear modulus. A crossing of shear elastic constants along axial direction and radial direction was observed near $150^{\circ}C$. This fact corresponds to the crossing of c44 and c66 of single crystal zirconium.

A nonlinear Co-rotational Quasi-Conforming 4-node Shell Element Using Ivanov-Ilyushin Yield Criteria (이바노브-율리신 항복조건을 이용한 4절점 비선형 준적합 쉘요소)

  • Panot, Songsak Pramin;Kim, Ki Du
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.409-419
    • /
    • 2008
  • A co-rotational quasi-conforming formulation of four- node stress resultant shell elements using Ivanov-Ilyushin yield criteria are presented for the nonlinear analysis of plate and shell structure. The formulation of the geometrical stiffness is defined by the full definition of the Green strain tensor and it is efficient for analyzing stability problems of moderately thick plates and shells as it incorporates the bending moment and transverse shear resultant force. As a result of the explicit integration of the tangent stiffness matrix, this formulation is computationally very efficient in incremental nonlinear analysis. This formulation also integrates the elasto-plastic material behaviour using Ivanov Ilyushin yield condition with isotropic strain hardening and its asocia ted flow rules. The Ivanov Ilyushin plasticity, which avoids multi-layer integration, is computationally efficient in large-scale modeling of elasto-plastic shell structures. The numerical examples herein illustrate a satisfactory concordance with test ed and published references.