A nonlinear Co-rotational Quasi-Conforming 4-node Shell Element Using Ivanov-Ilyushin Yield Criteria

이바노브-율리신 항복조건을 이용한 4절점 비선형 준적합 쉘요소

  • Received : 2008.04.15
  • Accepted : 2008.04.24
  • Published : 2008.06.10

Abstract

A co-rotational quasi-conforming formulation of four- node stress resultant shell elements using Ivanov-Ilyushin yield criteria are presented for the nonlinear analysis of plate and shell structure. The formulation of the geometrical stiffness is defined by the full definition of the Green strain tensor and it is efficient for analyzing stability problems of moderately thick plates and shells as it incorporates the bending moment and transverse shear resultant force. As a result of the explicit integration of the tangent stiffness matrix, this formulation is computationally very efficient in incremental nonlinear analysis. This formulation also integrates the elasto-plastic material behaviour using Ivanov Ilyushin yield condition with isotropic strain hardening and its asocia ted flow rules. The Ivanov Ilyushin plasticity, which avoids multi-layer integration, is computationally efficient in large-scale modeling of elasto-plastic shell structures. The numerical examples herein illustrate a satisfactory concordance with test ed and published references.

율리신-이바노브 항복 조건을 이용하여 4절점 순수변위 준적합 쉘요소의 정식화를 제안하였다. 기하강성 행렬은 그린 변형률 텐서를 이용하여 휨변형률 및 전단변형률도 기하강성행렬에 고려되었다. 그 결과 접선강성행렬의 해석적인 적분으로 비선형 해석시 매우 효율적으로 계산이 되고 있다. 이 정식은 변형률 경화의 이바노브-유리신 항복조건을 이용하여 재료 비선형 해석시에도 쉽게 적분이 된다. 즉 두께 방향의 적층 적분을 하지 않는 율리신-이바노브의 정식은 대규모의 쉘 구조에도 계산상 아주 적합하다. 검증된 수치 예제에서 만족스러운 결과를 보여주고 있다.

Keywords

Acknowledgement

Supported by : 한국건설기술평가원

References

  1. Simo J.C. and Rifai M.S., 1990. A class of mixed assumed strain method of incompatible modes. International Journal for Numerical Methods in Engineering, 29:1595-1638 https://doi.org/10.1002/nme.1620290802
  2. Shi, G., and Voyiadjis, G.Z., 1991. Geometrically Nonlinear Analysis of Plates by Assumed Strain Element with Explicit Tangent Stiffness Matrix. Computers and Structures. 41:757-763 https://doi.org/10.1016/0045-7949(91)90185-O
  3. Voyiadjis, G.Z., and Shi, G., 1992. Nonlinear Post-Buckling Analysis of Plates and Shallow Shells by Four-Noded Quadrilateral Strain Element. AIAA Journal. 30(4):1110-1116 https://doi.org/10.2514/3.11033
  4. A.A. Ilyushin, Plasticitie, Editions Eyrolles, Paries, 1956
  5. M.A. Crisfield, On an approximate yield criterion for thin steel shell, Internal Report, Crowthorne, Berkshire TRRL, 1974
  6. Q. Zeng, A. Comdescure, F. Arnaudean, An efficient plasticity algorithm for shell elements application to metal forming simulation, Computers and Struct. (2001) pp. 1525-1540
  7. K.D. Kim, G.R. Lomboy and G.Z.Voyiadjis, A 4-Node Assumed Strain Quasi-Conforming Shell Element with 6 D.O.F., International Journal for Numerical Methods in Engineering, Volume 58, Issue 14, pp. 2177-2200, December 2003 https://doi.org/10.1002/nme.854
  8. K.D.Kim, G.R. Lomboy, A Co-rotational Quasi-Conforming 4-Node Assumed Strain Shell Element forLarge Displacement of Elasto-plastic Analysis, Computer Methods in Applied Mechanics and Engineering, 195 (2006) pp. 6502-6522, September https://doi.org/10.1016/j.cma.2006.02.004
  9. Javaherian H. and Dowling P.J. (1985),Large deflection elasto-plastic analysis of thin shells, Enging Struct. Vol.7 July, pp. 154-162 https://doi.org/10.1016/0141-0296(85)90042-2
  10. Djhani P. (1977), Large deflection elasto-plastic analysis of discretely stiffened plates, Ph.D. Thesis. Dept. of Civil Engineering, Imperial College, London
  11. Webb S.E. and Dowling P.J. (1980), Large-deflection elasto-plastic behaviour of discretely stiffened plates, Proceeding of Institutions of Civil Engineers, Part 2, 69, 3 June pp. 75-401
  12. Agelidis, N. (1984), Buckling of stringer stiffened shells under axial and pressure loading, Ph.D. Thesis, Dept. of Civil Engineering, Imperial College, London
  13. J.C. Simo, J.G. Kennedy, On a stress resultant geometrically exact shell model Part V: Nonlinear plasticity: Formulation and integration algorithm, Comput. Methods Appl. Mech. Eng. 96 (1992) pp. 133-171 https://doi.org/10.1016/0045-7825(92)90129-8
  14. B. Brank, D. Peric, F.B. Damjanic, On large deformation of thin elasto-plastic shells; implementation of finite rotation model for a quadrilateral shell element, Int. J. Numer. Methods Eng. 40 (1997) pp. 689-726 https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4<689::AID-NME85>3.0.CO;2-7