• Title/Summary/Keyword: stiffness problem

Search Result 666, Processing Time 0.029 seconds

Forced vibrations of an elastic rectangular plate supported by a unilateral two-parameter foundation via the Chebyshev polynomials expansion

  • Zekai Celep;Zeki Ozcan
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.551-568
    • /
    • 2024
  • The present study deals with static and dynamic behaviors including forced vibrations of an elastic rectangular nano plate on the two-parameter foundation. Firstly, the rectangular plate is assumed to be subjected to uniformly distributed and eccentrically applied concentrated loads. The governing equations of the problem are derived by considering the dynamic response of the plate, employing a series of the Chebyshev polynomials for the displacement function and applying the Galerkin method. Then, effects of the non-essential boundary conditions of the plate, i.e., the boundary conditions related to the shearing forces, the bending moments and the corner forces, are included in the governing equation of motion to compensate for the non-satisfied boundary conditions and increase the accuracy of the Galerkin method. The approximate numerical solution is accomplished using an iterative process due to the non-linearity of the unilateral property of the two-parameter foundation. The plate under static concentrated load is investigated in detail numerically by considering a wide range of parameters of the plate and the foundation stiffnesses. Numerical treatment of the problem in the time domain is carried out by assuming a stepwise variation of the concentrated load and the linear acceleration procedure is employed in the solution of the system of governing differential equations derived from the equation of motion. Time variations of the contact region and those of the displacements of the plate are presented in the figures for various numbers of the two-parameter of the foundation, as well as the classical and nano parameters of the plate particularly focusing on the non-linearity of the problem due to the plate lift-off from the unilateral foundation. The effects of classical and nonlocal parameters and loading are investigated in detail. Definition of the separation between the plate and the two-parameter foundation is presented and applied to the given problem. The effect of the lift-off on the static and dynamic behavior of the rectangular plate is studied in detail by considering various loading conditions. The numerical study shows that the effect of nonlocal parameters on the behavior of the plate becomes significant, when nonlinearity becomes more profound, due to the lift-off of the plate. It is seen that the size effects are significant in static and dynamic analysis of nano-scaled rectangular plates and need to be included in the mechanical analyses. Furthermore, the corner displacement of the plate is affected more significantly from the lift-off, whereas it is less marked in the time variation of the middle displacement of the plate. Several numerical examples are presented to examine the sensibility of various parameters associated with nonlocal parameters of the plate and foundation. Both stiffening and softening nonlocal parameters behavior of the plate are identified in the numerical solutions which show that increasing the foundation stiffness decreases the extent of the contact region, whereas the stiffness of the shear layer increases the contact region and reduces the foundation settlement considerably.

The Optimal Configuration of Arch Structures Using Force Approximate Method (부재력(部材力) 근사해법(近似解法)을 이용(利用)한 아치구조물(構造物)의 형상최적화(形狀最適化)에 관한 연구(研究))

  • Lee, Gyu Won;Ro, Min Lae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.95-109
    • /
    • 1993
  • In this study, the optimal configuration of arch structure has been tested by a decomposition technique. The object of this study is to provide the method of optimizing the shapes of both two hinged and fixed arches. The problem of optimal configuration of arch structures includes the interaction formulas, the working stress, and the buckling stress constraints on the assumption that arch ribs can be approximated by a finite number of straight members. On the first level, buckling loads are calculated from the relation of the stiffness matrix and the geometric stiffness matrix by using Rayleigh-Ritz method, and the number of the structural analyses can be decreased by approximating member forces through sensitivity analysis using the design space approach. The objective function is formulated as the total weight of the structures, and the constraints are derived by including the working stress, the buckling stress, and the side limit. On the second level, the nodal point coordinates of the arch structures are used as design variables and the objective function has been taken as the weight function. By treating the nodal point coordinates as design variable, the problem of optimization can be reduced to unconstrained optimal design problem which is easy to solve. Numerical comparisons with results which are obtained from numerical tests for several arch structures with various shapes and constraints show that convergence rate is very fast regardless of constraint types and configuration of arch structures. And the optimal configuration or the arch structures obtained in this study is almost the identical one from other results. The total weight could be decreased by 17.7%-91.7% when an optimal configuration is accomplished.

  • PDF

Flexural and Buckling Analysis of Laminated Composite Beams with Bi- and Mono-Symmetric Cross-Sections (이축 및 일축 대칭단면 적층복합 보의 휨과 좌굴해석)

  • Hwoang, Jin-Woo;Back, Sung Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.614-621
    • /
    • 2019
  • A generalized laminated composite beam element is presented for the flexural and buckling analysis of laminated composite beams with double and single symmetric cross-sections. Based on shear-deformable beam theory, the present beam model accounts for transverse shear and warping deformations, as well as all coupling terms caused by material anisotropy. The plane stress and plane strain assumptions were used along with the cross-sectional stiffness coefficients obtained from the analytical technique for different cross-sections. Two types of one-dimensional beam elements with seven degrees-of-freedom per node, including warping deformation, i.e., three-node and four-node elements, are proposed to predict the flexural behavior of symmetric or anti-symmetric laminated beams. To alleviate the shear-locking problem, a reduced integration scheme was employed in this study. The buckling load of laminated composite beams under axial compression was then calculated using the derived geometric block stiffness. To demonstrate the accuracy and efficiency of the proposed beam elements, the results based on three-node beam element were compared with those of other researchers and ABAQUS finite elements. The effects of coupling and shear deformation, support conditions, load forms, span-to-height ratio, lamination architecture on the flexural response, and buckling load of composite beams were investigated. The convergence of two different beam elements was also performed.

Stress Intensity Factor of Cracked Plates with Bonded Composite Patch by p-Convergence Based Laminated Plate Theory (p-수렴 적층 평판이론에 의한 균열판의 팻취보강후 응력확대계수 산정)

  • Woo, Kwang-Sung;Han, Sang-Hyun;Yang, Seung-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.649-656
    • /
    • 2008
  • The enhancement of the service life of damaged or cracked structures is a major issue for researchers and engineers. The hierarchic void element based on the integrals of Legendre polynomials is used to characterize the fracture behaviour of unpatched crack as well as repaired crack with bonded composite patches by computing the stress intensity factors and stress contours at the crack tip. Since the equivalent single layer approach is adopted in this study, the proposed element is necessary to represent a discontinuous crack part as a continuum body with zero stiffness. Thus the aspect ratio of this element to represent the crack should be extremely slender. The sensitivity of numerical solution with respect to energy release rate, displacement and stress has been tested to show the robustness of zero stiffness element as the aspect ratio is increased up to 2000. The stiffness derivative method and displacement extrapolation method have been applied to calculate the stress intensity factors of Mode I problem. It is noted that the proposed hierarchical void element can be one of alternatives to analyze the patched crack problems.

A Symbolic Manipulation Computer Program for Structural Analysis (구조해석(構造解析)을 위한 Symbolic Manipulation Program)

  • Shim, Jae Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.95-107
    • /
    • 1983
  • The general purpose programs are in their fixed algorithm and theory of mechanics which can not be altered without painful program modifications. Users are usually guided by user's manual for data input. The several symbolic manipulation programs for structural analysis are introduced recently. These programs allow users to include a wide class of solution algorithm and to specify, by means of some symbolic manipulation, a combination of analytical steps to suit a particular problem. As they can solve a single domain problem, a large computer is usually needed. The scope of this study is to develop an efficient symbolic manipulation program with space beam element, plate bending element and eigen value routines. The incorporated Substructure capability and generation capability of finite element characteristic arrays (e.g., stiffness matrix, mass matrix) enables users to analyse multidomain problem with small computer. The program consists of modulized independent processors, each having its own specific function and is easily modified, eliminated and added. The processors are efficiently handling data by the Data base approach which is the concept of integrated program network(IPN).

  • PDF

Sparsity-constrained Extended Kalman Filter concept for damage localization and identification in mechanical structures

  • Ginsberg, Daniel;Fritzen, Claus-Peter;Loffeld, Otmar
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.741-749
    • /
    • 2018
  • Structural health monitoring (SHM) systems are necessary to achieve smart predictive maintenance and repair planning as well as they lead to a safe operation of mechanical structures. In the context of vibration-based SHM the measured structural responses are employed to draw conclusions about the structural integrity. This usually leads to a mathematically illposed inverse problem which needs regularization. The restriction of the solution set of this inverse problem by using prior information about the damage properties is advisable to obtain meaningful solutions. Compared to the undamaged state typically only a few local stiffness changes occur while the other areas remain unchanged. This change can be described by a sparse damage parameter vector. Such a sparse vector can be identified by employing $L_1$-regularization techniques. This paper presents a novel framework for damage parameter identification by combining sparse solution techniques with an Extended Kalman Filter. In order to ensure sparsity of the damage parameter vector the measurement equation is expanded by an additional nonlinear $L_1$-minimizing observation. This fictive measurement equation accomplishes stability of the Extended Kalman Filter and leads to a sparse estimation. For verification, a proof-of-concept example on a quadratic aluminum plate is presented.

Shape Design Optimization of Fluid-Structure Interaction Problems (유체-구조 연성 문제의 형상 최적설계)

  • Ha, Yoon-Do;Kim, Min-Geun;Cho, Hyun-Gyu;Cho, Seon-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.130-138
    • /
    • 2007
  • A coupled variational equation for fluid-structure interaction (FSI) problems is derived from a steady state Navier-Stokes equation for incompressible Newtonian fluid and an equilibrium equation for geometrically nonlinear structures. For a fully coupled FSI formulation, between fluid and structures, a traction continuity condition is considered at interfaces where a no-slip condition is imposed. Under total Lagrange formulation in the structural domain, finite rotations are well described by using the second Piola-Kirchhoff stress and Green-Lagrange strain tensors. An adjoint shape design sensitivity analysis (DSA) method based on material derivative approach is applied to the FSI problem to develop a shape design optimization method. Demonstrating some numerical examples, the accuracy and efficiency of the developed DSA method is verified in comparison with finite difference sensitivity. Also, for the FSI problems, a shape design optimization is performed to obtain a maximal stiffness structure satisfying an allowable volume constraint.

A Study on the Finite Element Analysis of Three Dimensional Plate Structures (3차원 공간 판구조물의 유한요소 해석에 관한 연구)

  • 권오영;남정길
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.1
    • /
    • pp.54-59
    • /
    • 1999
  • High-speed electronic digital computers have enabled engineers to employ various numerical discretization techniques for solutions of complex problems. The Finite Element Method is one of the such technique. The Finite Element Method is one of the numerical analysis based on the concepts of fundamental mathematical approximation. Three dimensional plate structures used often in partition of ship, box girder and frame are analyzed by Finite Element Method. In design of structures, the static deflections, stress concentrations and dynamic deflections must be considered. However, these problem belong to geometrically nonlinear mechanical structure analysis. The analysis of each element is independent, but coupling occurs in assembly process of elements. So, to overcome such a difficulty the shell theory which includes transformation matrix and a fictitious rotational stiffness is taken into account. Also, the Mindlin's theory which is considered the effect of shear deformation is used. The Mindlin's theory is based on assumption that the normal to the midsurface before deformation is "not necessarily normal to the midsurface after deformation", and is more powerful than Kirchoff's theory in thick plate analysis. To ensure that a small number of element can represent a relatively complex form of the type which is liable to occur in real, rather than in academic problem, eight-node quadratic isoparametric elements are used. are used.

  • PDF

Rational finite element method for plane orthotropic elastic problems

  • Mao, Ling;Yao, Weian;Gao, Qiang;Zhong, Wanxie
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.923-937
    • /
    • 2014
  • The rational finite element method is different from the standard finite element method, which is constructed using basic solutions of the governing differential equations as interpolation functions in the elements. Therefore, it is superior to the isoparametric approach because of its obvious physical meaning and accuracy; it has successfully been applied to the isotropic elasticity problem. In this paper, the formulation of rational finite elements for plane orthotropic elasticity problems is deduced. This method is formulated directly in the physical domain with full consideration of the requirements of the patch test. Based on the number of element nodes and the interpolation functions, different approaches are applied with complete polynomial interpolation functions. Then, two special stiffness matrixes of elements with four and five nodes are deduced as a representative application. In addition, some typical numerical examples are considered to evaluate the performance of the elements. The numerical results demonstrate that the present method has a high level of accuracy and is an effective technique for solving plane orthotropic elasticity problems.

A Study on the Plane Stress Problem of Composite Laminated Annular Elements Using Finite Difference Method (유한차분법을 이용한 복합적층 원형곡선요소의 평면응력문제 연구)

  • Lee, Sang Youl;Yhim, Sung Soon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.65-79
    • /
    • 1997
  • Composite materials are consist of two or more different materials to produce desirable properties for structural strength. Because of their superiority in strength, corrosion resistance, and weight reduction, they are used extensively as structural members. The objective of this study is to present the effectivness of the laminated composite elements by analyzing in-plane displacement and stress of the anisotropic laminated annular elements. Anisotropic laminated structures are very difficult to analyze and apply, compared with isotropic and orthotropic cases for arbitrary boundaries and fiber angle -ply. Boundary conditions for the examples used in this study consist of two opposite edges clamped and the other two edges free, and finite difference method is used in this study for numerical analysis. From the numerical result, it is found that the program used in this study can be used to obtain the displacement of the straight beams considering it's transverse shear deformation as well as anisotropic laminated elements. Several numerical examples show the advantages of the stiffness increase when the angle-ply composite materials are used. Therefore it gives a guide in deciding how to make use of fiber's angle for the subtended angle, load cases, and boundary conditions.

  • PDF