DOI QR코드

DOI QR Code

Flexural and Buckling Analysis of Laminated Composite Beams with Bi- and Mono-Symmetric Cross-Sections

이축 및 일축 대칭단면 적층복합 보의 휨과 좌굴해석

  • 황진우 (인제대학교 토목공학과) ;
  • 백성용 (인제대학교 토목도시공학부)
  • Received : 2019.09.18
  • Accepted : 2019.12.06
  • Published : 2019.12.31

Abstract

A generalized laminated composite beam element is presented for the flexural and buckling analysis of laminated composite beams with double and single symmetric cross-sections. Based on shear-deformable beam theory, the present beam model accounts for transverse shear and warping deformations, as well as all coupling terms caused by material anisotropy. The plane stress and plane strain assumptions were used along with the cross-sectional stiffness coefficients obtained from the analytical technique for different cross-sections. Two types of one-dimensional beam elements with seven degrees-of-freedom per node, including warping deformation, i.e., three-node and four-node elements, are proposed to predict the flexural behavior of symmetric or anti-symmetric laminated beams. To alleviate the shear-locking problem, a reduced integration scheme was employed in this study. The buckling load of laminated composite beams under axial compression was then calculated using the derived geometric block stiffness. To demonstrate the accuracy and efficiency of the proposed beam elements, the results based on three-node beam element were compared with those of other researchers and ABAQUS finite elements. The effects of coupling and shear deformation, support conditions, load forms, span-to-height ratio, lamination architecture on the flexural response, and buckling load of composite beams were investigated. The convergence of two different beam elements was also performed.

이축 및 일축대칭 단면의 적층복합 보의 휨 해석과 좌굴해석을 위해 일반화된 보 요소를 제안하였다. 전단변형보 이론을 사용하여 유도된 보 요소는 휨 전단변형 및 휨 비틀림과 재료 비등방성 성질에 따른 연계성을 고려하였다. 서로 다른 단면에 대해 해석적 기법으로 구한 단면 강성계수와 함께 평면응력과 평면변형률 가정을 사용하였다. 대칭 및 역대칭 적층복합 보의 휨 거동을 조사하기 위해 뒴 변형을 포함하여 절점 당 7개의 자유도를 가진 두 가지 유형의 3절점, 4절점 보 요소를 제안하였다. 전단잠금 현상을 완화하기 위해 본 연구에서는 감차적분 기법을 사용하였다. 또한, 유도된 기하학적 블록강성을 사용하여 축방향 압축력을 받는 적층복합 보의 좌굴하중을 산정하였다. 제시한 보 요소의 정확성과 효율성을 검증하기 위해 3절점 보 요소에 근거한 결과를 다른 연구자와 ABAQUS 유한요소 해석결과와 비교하였다. 적층복합 보의 휨 거동과 좌굴하중에 대한 연계강성과 전단변형, 경계조건, 하중형태, 길이-높이 비, 적층형태의 영향을 조사하였다. 두 개의 다른 보 요소의 수렴성도 제시하였다.

References

  1. V. Z. Vlasov, "Thin-walled elastic beams," Jerusalem: Israel Program for Scientific Translation, 1961.
  2. A. Gjelsvik, "The theory of thin-walled bars," New York: Wiley, 1981.
  3. N. R. Bauld, L. S. Tzeng, "A Vlasov theory for fiber-reinforced beams with thin-walled open cross section," International Journal of Solids and Structures, vol. 20, no. 3, pp. 277-297, 1984. DOI: https://doi.org/10.1016/0020-7683(84)90039-8
  4. J. Lee, "Flexural analysis of thin-walled composite beams using shear-deformable beam theory," Composite Structures, vol. 70, no. 2, pp. 212-222, 2005. DOI: https://doi.org/10.1016/j.compstruct.2004.08.023
  5. S. Y. Back, S. S. Lee, "A $C^0$ Finite Element of Thin-Walled Laminated Composite I-Beams Including Shear Deformation," Journal of Korean Society of Steel Construction, vol. 18, no. 3, pp. 349-359, 2006. (in Korean) DOI: https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001120277
  6. S. Y. Back, K. M. Will, "Shear-flexible thin-walled element for composite I-beams," Engineering Structures, vol. 30, no. 5, pp. 1447-1458, 2008. DOI: https://doi.org/10.1016/j.engstruct.2007.08.002
  7. S. Y. Back, " Flexural analysis of laminated composite T-beams," Journal of Korean Society of Steel Construction, vol. 26, no. 5, pp. 397-405, 2014. (in Korean) DOI: https://www.kci.go.kr/kciportal/ci/sereArticle Search/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001923507 https://doi.org/10.7781/kjoss.2014.26.5.397
  8. T. P. Vo, J. Lee, "On sixfold coupled buckling of thin-walled composite beams," Composite Structures, vol. 90, no. 3, pp. 295-303, 2009. DOI: https://doi.org/10.1016/j.compstruct.2009.03.008
  9. N. I. Kim, D. H. Choi, "Super convergent shear deformable finite elements for stability analysis of composite beams," Composites: Part B, vol. 44, no. 1, pp. 100-111, 2013. DOI: https://doi.org/10.1016/j.compositesb.2012.07.013
  10. N. I. Kim, "Shear deformable doubly- and monosymmetric composite I-beams," International Journal of Mechanical Sciences, vol. 53, no. 1, pp. 31-41, 2011. DOI: https://doi.org/10.1016/j.ijmecsci.2010.10.004
  11. F. Bleich, "Buckling strength of metal structures," New York: McGraw-Hill, 1952.
  12. Y. S. Park, H. C. Kwan, D. K. Shin, "Bending Analysis of Symmetrically Laminated Composite Open Section Beam by Vlasov-Type Thin-Walled Beam Theory," Korean Society of Civil Engineering, vol. 20, no. I-A, pp. 125-141, 2000. (in Korean)
  13. J. N. Reddy, "Mechanics of laminated composite plates: theory and analysis," CRC Press, 1997.