• Title/Summary/Keyword: stiffness problem

Search Result 666, Processing Time 0.031 seconds

On the ill - condition of reverse process from structural dynamic response data (구조계의 동적응답을 이용한 역해석에서의 악조건)

  • 양경택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.390-397
    • /
    • 1998
  • An approach to identifying input forces is proposed using measured structural dynamic responses and its analytical model. The identification of input forces is a reverse process and ill-conditioned problem. Its solution is unstable and generally case dependent. In this paper, the ill-condition is described considering characteristic matrix which is defined by reduced dynamic stiffness matrix. Special attention is focused on the condition number of a characteristic matrix used in the solution algorithm of this reverse process. Simple example is presented in support of the ill-condition of a reverse process.

  • PDF

A Study on Implementation of Stable Interaction Control System

  • Yongteak Lim;Kim, Seungwoo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.608-611
    • /
    • 2000
  • We introduce Adaptive Fuzzy Impedance Controller for position and force control when robot contact with environment. Because Robot and environment was always effected by nonlinear conditions, it need to deal with parameter’s uncertainty. For solving this problem, it induced Fuzzy System in Impedance Control so fuzzy system is impedance’s stiffness gain. We apply adaptive fuzzy impedance controller in One-Link Robot System, it shows the good performance on desired position control and force control about contacting with arbitrarily environment.

  • PDF

Damage assessment of beams from changes in natural frequencies using ant colony optimization

  • Majumdar, Aditi;De, Ambar;Maity, Damodar;Maiti, Dipak Kumar
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.391-410
    • /
    • 2013
  • A numerical method is presented here to detect and assess structural damages from changes in natural frequencies using Ant Colony Optimization (ACO) algorithm. It is possible to formulate the inverse problem in terms of optimization and then to utilize a solution technique employing ACO to assess the damage/damages of structures using natural frequencies. The laboratory tested data has been used to verify the proposed algorithm. The study indicates the potentiality of the developed code to solve a wide range of inverse identification problems in a systematic manner. The developed code is used to assess damages of beam like structures using a first few natural frequencies. The outcomes of the simulated results show that the developed method can detect and estimate the amount of damages with satisfactory precision.

Structural Optimum Design of Composite Rotor Blade (복합재 로터 블레이드의 구조 최적설계)

  • Park, Jung-Jin;Lee, Min-Woo;Bae, Jae-Sung;Lee, Soo-Yong;Kim, Seok-Woo
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.3
    • /
    • pp.26-31
    • /
    • 2007
  • This paper addresses a method for structural optimum design of composite rotor blade. The basic model of a composite helicopter main rotor blade is designed and its parameters determining the structural/dynamic properties are studied. Through the investigation of flap/lag/torsional stiffness, the structural properties of the model are analyzed. In this study, helicopter rotor blades are analyzed by using VABS. The computer program VABS (Variational Asymptotic Beam Section Analysis) uses the variational asymptotic method to split a three-dimensional nonlinear elasticity problem into a two dimensional cross-sectional analysis and a one-dimensional nonlinear beam problem. This is accomplished by taking advantage of certain small parameters inherent to beam-like structures. In addition, the rotational stability of the blade is estimated by the frequency diagram from FE analysis(MSC.Patran/Nastran) to understand its vibrational property. From the result, design parameters to determine and optimize the properties of the model are presented.

  • PDF

Computational design of an automotive twist beam

  • Aalae, Benki;Abderrahmane, Habbal;Gael, Mathis
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.215-225
    • /
    • 2016
  • In recent years, the automotive industry has known a remarkable development in order to satisfy the customer requirements. In this paper, we will study one of the components of the automotive which is the twist beam. The study is focused on the multicriteria design of the automotive twist beam undergoing linear elastic deformation (Hooke's law). Indeed, for the design of this automotive part, there are some criteria to be considered as the rigidity (stiffness) and the resistance to fatigue. Those two criteria are known to be conflicting, therefore, our aim is to identify the Pareto front of this problem. To do this, we used a Normal Boundary Intersection (NBI) algorithm coupling with a radial basis function (RBF) metamodel in order to reduce the high calculation time needed for solving the multicriteria design problem. Otherwise, we used the free form deformation (FFD) technique for the generation of the 3D shapes of the automotive part studied during the optimization process.

Closed-form solutions for non-uniform axially loaded Rayleigh cantilever beams

  • Sarkar, Korak;Ganguli, Ranjan;Elishakoff, Isaac
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.455-470
    • /
    • 2016
  • In this paper, we investigate the free vibration of axially loaded non-uniform Rayleigh cantilever beams. The Rayleigh beams account for the rotary inertia effect which is ignored in Euler-Bernoulli beam theory. Using an inverse problem approach we show, that for certain polynomial variations of the mass per unit length and the flexural stiffness, there exists a fundamental closed form solution to the fourth order governing differential equation for Rayleigh beams. The derived property variation can serve as test functions for numerical methods. For the rotating beam case, the results have been compared with those derived using the Euler-Bernoulli beam theory.

Elastic Analysis of the Mode III Crack Problem (모드III 탄성 균열문제 해석에 대한 연구)

  • 김윤영;윤민수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.941-949
    • /
    • 1995
  • An efficient method based on analytic solutions is applied to solve anti-plane Mode III crack problems. The analytic technique developed earlier by the present authors for Laplace's equation in a simply-connected region is now extended to general Mode III crack problems. Unlike typical numerical methods which require fine meshing near crack tips, the present method divides the cracked bodies, typically non-convex or multiply-connected, into only a few super elements. In each super element, an element stiffness matrix, relating the series coefficients of the traction and displacement, is first formed. Then an assembly algorithm similar to that used in the finite elements, is first formed. Then an assembly algorithm similar to that used in the finite elements, is developed. A big advantage of the present method is that only the boundary conditions are to be satisfied in the solution procedure due to the use of analytic solutions. Several numerical results demonstrate the efficiency and accuracy of the present method.

A Study on the Elastic-Plastic Contact Problem for Large Deformation (대변형 탄소성 접촉문제에 관한 연구)

  • 전병희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.11-26
    • /
    • 1992
  • In this research, a numerical algorithm has been developed, which can be applied to the large deformation and large displacement contact problems between angle change have been proposed considering the change in geometric shape and rate of contact force. A set of linear simultaneous equations is constructed by adding the geometric shape change and contact conditions to the original stiffness matrix. A new method to determine time increment has been proposed based on Euler method, in which the condition to prevent the contact bodies from penetrating and overrunning each other has been taken into consideration. Practical application to contact problem is extrusion in which bodies are sliding along the contact boundary.

  • PDF

Linear instability or buckling problems for mechanical and coupled thermomechanical extreme conditions

  • Ibrahimbegovic, Adnan;Hajdo, Emina;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.2 no.4
    • /
    • pp.349-374
    • /
    • 2013
  • In this work we propose a novel procedure for direct computation of buckling loads for extreme mechanical or thermomechanical conditions. The procedure efficiency is built upon the von Karmann strain measure providing the special format of the tangent stiffness matrix, leading to a general linear eigenvalue problem for critical load multiplier estimates. The proposal is illustrated on a number of validation examples, along with more complex examples of interest for practical applications. The comparison is also made against a more complex computational procedure based upon the finite strain elasticity, as well as against a more refined model using the frame elements. All these results confirm a very satisfying performance of the proposed methodology.

Damage assessment of structures from changes in natural frequencies using genetic algorithm

  • Maity, Damodar;Tripathy, Rashmi Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.19 no.1
    • /
    • pp.21-42
    • /
    • 2005
  • A method is presented to detect and assess the structural damage from changes in natural frequencies using Genetic Algorithm (GA). Using the natural frequencies of the structure, it is possible to formulate the inverse problem in optimization terms and then to utilize a solution procedure employing GA to assess the damages. The technique has been applied to a cantilever beam and a plane frame, each one with different damage scenario to study the efficiency of the developed algorithm. A laboratory tested data has been used to verify the proposed algorithm. The study indicates the potentiality of the developed code to solve a wide range of inverse identification problems in a systematic way. The outcomes show that this method can detect and estimate the amount of damages with satisfactory precision.