DOI QR코드

DOI QR Code

Damage assessment of structures from changes in natural frequencies using genetic algorithm

  • Received : 2003.11.03
  • Accepted : 2004.08.10
  • Published : 2005.01.10

Abstract

A method is presented to detect and assess the structural damage from changes in natural frequencies using Genetic Algorithm (GA). Using the natural frequencies of the structure, it is possible to formulate the inverse problem in optimization terms and then to utilize a solution procedure employing GA to assess the damages. The technique has been applied to a cantilever beam and a plane frame, each one with different damage scenario to study the efficiency of the developed algorithm. A laboratory tested data has been used to verify the proposed algorithm. The study indicates the potentiality of the developed code to solve a wide range of inverse identification problems in a systematic way. The outcomes show that this method can detect and estimate the amount of damages with satisfactory precision.

Keywords

References

  1. Au, F.T.K. (2003), 'Structural damage detection based on a micro-genetic algorithm using incomplete and noisy modal test data', J. Sound Vib., 259, 1081-1094 https://doi.org/10.1006/jsvi.2002.5116
  2. Barai, S.V. and Pandey, P.C. (1995), 'Multilayer perceptron in damage detection of bridge structures', Comput. Struct., 54, 597-608 https://doi.org/10.1016/0045-7949(94)00377-F
  3. Cerri, M.N. and Vestroni, F (2000), 'Detection of damage in beams subjected to diffused cracking', J. Sound Vih., 234(2), 259-276 https://doi.org/10.1006/jsvi.1999.2887
  4. Chondros, T.G. and Dimarogonas, A.D. (1989), 'Influence of cracks on the dynamic characteristics of structures', J. Vibration, Acoustics, Stress and Reliability in Design, 111, 251-256 https://doi.org/10.1115/1.3269849
  5. Chondros, T.G., Dimarogonas, A.D. and Yao, J. (1998), 'A continuous cracked beam vibration theory', J. Sound Vib., 215(1), 17-34 https://doi.org/10.1006/jsvi.1998.1640
  6. Chondros, T.G. and Dimarogonas, A.D. (1998), 'Vibration of a cracked cantilever beam', J. Vibration, Acoustics, Stress and Reliability in Design, 120, 742-746 https://doi.org/10.1115/1.2893892
  7. Chou, J.H. and Ghaboussi, J. (2001), 'Genetic algorithm in structural damage detection', Comput. Struct., 79, 1335-1353 https://doi.org/10.1016/S0045-7949(01)00027-X
  8. Elkordy, M.F., Chang, K.C. and Lee, G.C. (1993), 'Neural network trained by analytically simulated damage states', J. Computing in Civil Eng., ASCE, 120,251-265
  9. Feng, M.Q. and Bahng, E.Y. (1999), 'Damage assessment of jacketed RC columns using vibration tests', J. Struct. Eng., 125, 265-271 https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(265)
  10. Frishwell, M.I., Penny, J.E.T. and Garvey, S.D. (1998), 'A combined genetic and eigensensitivity algorithm for the location of damage in structures', Comput. Struct., 69, 547-556 https://doi.org/10.1016/S0045-7949(98)00125-4
  11. Gounaris, G., Papadopoulos, C. and Dimarogonas, A.D. (1996), 'Crack identification in beams by coupled response measurements', J. Comput. Struct., 58(2), 299-305 https://doi.org/10.1016/0045-7949(95)00142-4
  12. Hassiotis, S. and Jeong, G.D. (1995), 'Identification of stiffness reductions using natural frequencies', J. Eng. Mech., 121(10),1106-1113 https://doi.org/10.1061/(ASCE)0733-9399(1995)121:10(1106)
  13. He, Y.Y., Guo, D. and Chu, F (2001), 'Using genetic algorithm and finite element methods to detect shaft crack for rotor-bearing system', Mathematics and Computers in Simulation, 57, 95-108 https://doi.org/10.1016/S0378-4754(01)00295-6
  14. Krawczuk, M. (2002), 'Application of spectral beam finite element with a crack and iterative search technique for damage detection', Finite Elements in Analysis and Design, 38, 537-548 https://doi.org/10.1016/S0168-874X(01)00084-1
  15. Liu, G.R. and Chen, S.C. (2002), 'A novel technique for inverse identification of distributed stiffness factor in structures', J. Struct. Eng., 254, 823-835
  16. Loland, O. and Dodds, C.J. (1976), 'Experiencing in developing and operating integrity monitoring system in North Sea', Proc. of the 8th Annual Offshore Technology, Conf. 2, Paper No. 2551, 313-319
  17. Mares, C. and Surace, C. (1996), 'An application of genetic algorithms to identify damage in elastic structures', J. Sound Vib., 195(2), 195-215 https://doi.org/10.1006/jsvi.1996.0416
  18. Morassi, A (2001), 'Identification of a crack in a rod based on changes in a pair of natural frequencies', J. Sound Vib., 242(4), 577-596 https://doi.org/10.1006/jsvi.2000.3380
  19. Nandwana, B.P. and Maiti, S.K. (1994), 'Detection of the location and size of a crack in stepped cantilever beams based on measurements of natural frequencies', J. Sound Vib., 203(3), 435-446 https://doi.org/10.1006/jsvi.1996.0856
  20. Narkis, Y. (1994), 'Identification of crack location in vibrating simply supported beams', J. Sound Vib., 172(4), 549-558 https://doi.org/10.1006/jsvi.1994.1195
  21. Nikolakopoulos, P., Katsareas, D. and Papadopoulos, C. (1997), 'Crack identification in frame structures', J. Comput. Struct., 64(1), 389-406 https://doi.org/10.1016/S0045-7949(96)00120-4
  22. Ostachowicz, W.M. and Krawczuk, M. (1991), 'Analysis of the effect of cracks on the natural frequencies of a cantilever beam', J. Sound Vib., 150(2), 191-201 https://doi.org/10.1016/0022-460X(91)90615-Q
  23. Pandey, A.K., Biswas, M. and Samman, M.M. (1991), 'Damage detection from changes in curvature mode shapes', J. Sound Vib., 145(2),321-332 https://doi.org/10.1016/0022-460X(91)90595-B
  24. Pandey, A.K. and Biswas, M. (1994), 'Damage detection in structures using changes in flexibility', J. Sound Vib., 169(1), 3-17 https://doi.org/10.1006/jsvi.1994.1002
  25. Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986), 'Learning internal representations by error back-propagation', Parallel Distributed Processing Exploration in the Microstructure of Cognition, 1, 318-362
  26. Ruotolo, R. and Surace, C. (1997), 'Damage assessment of multiple cracked beams: Numerical results and experimental validation', J. Sound Vib., 206(4), 567-588 https://doi.org/10.1006/jsvi.1997.1109
  27. Sanayei, M. and Onipede, O. (1991), 'Damage assessment of structures using static test data', AIAA J., 29, 1174-1179 https://doi.org/10.2514/3.10720
  28. Suh, M.W., Shim, M.B. and Kim, M.Y. (2000), 'Crack identification using hybrid neuro-genetic technique', J. Sound Vib., 238(4), 617-635 https://doi.org/10.1006/jsvi.2000.3089
  29. Szewczyk, Z.P. and Hajela, P. (1994), 'Damage detection in structures based on feature sensitive neural networks', J. Computing in Civil Eng., ASCE, 8, 163-178 https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(163)
  30. Tsou, P. and Shen, M.H. (1994), 'Structural damage detection and identification using neural networks', AIAA J, 32, 176-183 https://doi.org/10.2514/3.11964
  31. Wahab, M.M.A. and Roeck, G.D. (1999), 'Damage detection in bridges using modal curvatures: Application to a real damage scenario', J. Sound Vib., 226, 217-235 https://doi.org/10.1006/jsvi.1999.2295
  32. Wu, X., Ghaboussi, J. and Garrett, J.H. (1992), 'Use of neural networks in detection of structural damage', Comput. Struct., 42, 649-659 https://doi.org/10.1016/0045-7949(92)90132-J
  33. Yang, J.C.S., Tsai, T., Pavlin, V, Chen, J. and Tsai, W.H. (1985), 'Structural damage detection by the system identification technique', Shock and Vibration Bulletin, 55, 57-66

Cited by

  1. Bird mating optimizer for structural damage detection using a hybrid objective function vol.35, 2017, https://doi.org/10.1016/j.swevo.2017.02.006
  2. A two-step approach for damage detection in beam based on influence line and bird mating optimizer vol.14, 2017, https://doi.org/10.21595/vp.2017.19211
  3. Crack Assessment in Frame Structures Using Modal Data and Unified Particle Swarm Optimization Technique vol.17, pp.5, 2014, https://doi.org/10.1260/1369-4332.17.5.747
  4. Damage assessment of truss structures from changes in natural frequencies using ant colony optimization vol.218, pp.19, 2012, https://doi.org/10.1016/j.amc.2012.03.031
  5. A Time-Domain Structural Damage Detection Method Based on Improved Multiparticle Swarm Coevolution Optimization Algorithm vol.2014, 2014, https://doi.org/10.1155/2014/232763
  6. A hybrid multiple damages detection method for plate structures vol.60, pp.5, 2017, https://doi.org/10.1007/s11431-016-9002-0
  7. An improved CSS for damage detection of truss structures using changes in natural frequencies and mode shapes vol.80, 2015, https://doi.org/10.1016/j.advengsoft.2014.09.010
  8. A comparative study on crack identification of structures from the changes in natural frequencies using GA and PSO vol.31, pp.7, 2014, https://doi.org/10.1108/EC-02-2013-0061
  9. Vibration-based Damage Identification Methods: A Review and Comparative Study vol.10, pp.1, 2011, https://doi.org/10.1177/1475921710365419
  10. Damage assessment from curvature mode shape using unified particle swarm optimization vol.52, pp.2, 2014, https://doi.org/10.12989/sem.2014.52.2.307
  11. Structural damage assessment using FRF employing particle swarm optimization vol.219, pp.20, 2013, https://doi.org/10.1016/j.amc.2013.04.016
  12. Differential Evolution: An Inverse Approach for Crack Detection vol.2013, 2013, https://doi.org/10.1155/2013/321931
  13. Modal parameter based inverse approach for structural joint damage assessment using unified particle swarm optimization vol.242, 2014, https://doi.org/10.1016/j.amc.2014.05.115
  14. A new intelligent algorithm for damage detection in frames via modal properties vol.9, pp.4, 2017, https://doi.org/10.1080/17508975.2016.1161584
  15. A flexibility method for structural damage identification using continuous ant colony optimization vol.11, pp.2, 2015, https://doi.org/10.1108/MMMS-05-2014-0027
  16. Application of Structural Health Monitoring System for Reliable Seismic Performance Evaluation of Infrastructures vol.15, pp.6, 2012, https://doi.org/10.1260/1369-4332.15.6.955
  17. Vibration Based Structural Damage Detection Technique using Particle Swarm Optimization with Incremental Swarm Size vol.13, pp.3, 2012, https://doi.org/10.5139/IJASS.2012.13.3.323
  18. Correlation-Based Damage Detection for Complicated Truss Bridges Using Multi-Layer Genetic Algorithm vol.15, pp.5, 2012, https://doi.org/10.1260/1369-4332.15.5.693
  19. Structural Damage Detection Based on Modal Parameters Using Continuous Ant Colony Optimization vol.2014, 2014, https://doi.org/10.1155/2014/174185
  20. Damage detection based on MCSS and PSO using modal data vol.15, pp.5, 2015, https://doi.org/10.12989/sss.2015.15.5.1253
  21. Experimental and numerical studies on a test method for damage diagnosis of stay cables vol.20, pp.2, 2017, https://doi.org/10.1177/1369433216659927
  22. Structural damage identification using piezoelectric impedance measurement with sparse inverse analysis vol.27, pp.3, 2018, https://doi.org/10.1088/1361-665X/aaacba
  23. Global Seismic Damage Model of RC Structures Based on Structural Modal Properties vol.144, pp.10, 2018, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002160
  24. Structural damage detection using time domain responses and an optimization method pp.1741-5985, 2019, https://doi.org/10.1080/17415977.2018.1505884
  25. A Modified Support Vector Regression Approach for Failure Analysis in Beam-Like Structures vol.18, pp.4, 2018, https://doi.org/10.1007/s11668-018-0494-5
  26. A two-step method for damage identification in beam structures based on influence line difference and acceleration data vol.10, pp.7, 2018, https://doi.org/10.1177/1687814018787404
  27. Ant lion optimisation algorithm for structural damage detection using vibration data vol.9, pp.1, 2019, https://doi.org/10.1007/s13349-018-0318-z
  28. A new damage index for detecting sudden change of structural stiffness vol.26, pp.3, 2005, https://doi.org/10.12989/sem.2007.26.3.315
  29. Damage detection in truss structures using a flexibility based approach with noise influence consideration vol.27, pp.5, 2005, https://doi.org/10.12989/sem.2007.27.5.625
  30. Study of the structural damage identification method based on multi-mode information fusion vol.31, pp.3, 2005, https://doi.org/10.12989/sem.2009.31.3.333
  31. Periodic seismic performance evaluation of highway bridges using structural health monitoring system vol.31, pp.5, 2009, https://doi.org/10.12989/sem.2009.31.5.527
  32. Damage assessment of beams from changes in natural frequencies using ant colony optimization vol.45, pp.3, 2013, https://doi.org/10.12989/sem.2013.45.3.391
  33. A novel heuristic search algorithm for optimization with application to structural damage identification vol.19, pp.4, 2005, https://doi.org/10.12989/sss.2017.19.4.449
  34. Damage Detection in the Truss Using Modified Dynamic Characteristics vol.30, pp.1, 2005, https://doi.org/10.5050/ksnve.2020.30.1.086
  35. Performance Studies of 10 Metaheuristic Techniques in Determination of Damages for Large-Scale Spatial Trusses from Changes in Vibration Responses vol.34, pp.2, 2005, https://doi.org/10.1061/(asce)cp.1943-5487.0000872
  36. A fast-convergent approach for damage assessment using CMA-ES optimization algorithm and modal parameters vol.10, pp.3, 2020, https://doi.org/10.1007/s13349-020-00397-1
  37. A hybrid identification method on butterfly optimization and differential evolution algorithm vol.26, pp.3, 2005, https://doi.org/10.12989/sss.2020.26.3.345
  38. Nondestructive health monitoring techniques for composite materials: A review vol.29, pp.5, 2021, https://doi.org/10.1177/0967391120921701
  39. A Novel Optimization Algorithm Based on Modal Force Information for Structural Damage Identification vol.21, pp.7, 2021, https://doi.org/10.1142/s0219455421501005
  40. Damage detection in structures using Particle Swarm Optimization combined with Artificial Neural Network vol.28, pp.1, 2021, https://doi.org/10.12989/sss.2021.28.1.001
  41. Output-only structural damage detection under multiple unknown white noise excitations vol.79, pp.3, 2005, https://doi.org/10.12989/sem.2021.79.3.327
  42. Delamination detection in composite plates using random forests vol.278, pp.None, 2005, https://doi.org/10.1016/j.compstruct.2021.114676