References
- Au, F.T.K. (2003), 'Structural damage detection based on a micro-genetic algorithm using incomplete and noisy modal test data', J. Sound Vib., 259, 1081-1094 https://doi.org/10.1006/jsvi.2002.5116
- Barai, S.V. and Pandey, P.C. (1995), 'Multilayer perceptron in damage detection of bridge structures', Comput. Struct., 54, 597-608 https://doi.org/10.1016/0045-7949(94)00377-F
- Cerri, M.N. and Vestroni, F (2000), 'Detection of damage in beams subjected to diffused cracking', J. Sound Vih., 234(2), 259-276 https://doi.org/10.1006/jsvi.1999.2887
- Chondros, T.G. and Dimarogonas, A.D. (1989), 'Influence of cracks on the dynamic characteristics of structures', J. Vibration, Acoustics, Stress and Reliability in Design, 111, 251-256 https://doi.org/10.1115/1.3269849
- Chondros, T.G., Dimarogonas, A.D. and Yao, J. (1998), 'A continuous cracked beam vibration theory', J. Sound Vib., 215(1), 17-34 https://doi.org/10.1006/jsvi.1998.1640
- Chondros, T.G. and Dimarogonas, A.D. (1998), 'Vibration of a cracked cantilever beam', J. Vibration, Acoustics, Stress and Reliability in Design, 120, 742-746 https://doi.org/10.1115/1.2893892
- Chou, J.H. and Ghaboussi, J. (2001), 'Genetic algorithm in structural damage detection', Comput. Struct., 79, 1335-1353 https://doi.org/10.1016/S0045-7949(01)00027-X
- Elkordy, M.F., Chang, K.C. and Lee, G.C. (1993), 'Neural network trained by analytically simulated damage states', J. Computing in Civil Eng., ASCE, 120,251-265
- Feng, M.Q. and Bahng, E.Y. (1999), 'Damage assessment of jacketed RC columns using vibration tests', J. Struct. Eng., 125, 265-271 https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(265)
- Frishwell, M.I., Penny, J.E.T. and Garvey, S.D. (1998), 'A combined genetic and eigensensitivity algorithm for the location of damage in structures', Comput. Struct., 69, 547-556 https://doi.org/10.1016/S0045-7949(98)00125-4
- Gounaris, G., Papadopoulos, C. and Dimarogonas, A.D. (1996), 'Crack identification in beams by coupled response measurements', J. Comput. Struct., 58(2), 299-305 https://doi.org/10.1016/0045-7949(95)00142-4
- Hassiotis, S. and Jeong, G.D. (1995), 'Identification of stiffness reductions using natural frequencies', J. Eng. Mech., 121(10),1106-1113 https://doi.org/10.1061/(ASCE)0733-9399(1995)121:10(1106)
- He, Y.Y., Guo, D. and Chu, F (2001), 'Using genetic algorithm and finite element methods to detect shaft crack for rotor-bearing system', Mathematics and Computers in Simulation, 57, 95-108 https://doi.org/10.1016/S0378-4754(01)00295-6
- Krawczuk, M. (2002), 'Application of spectral beam finite element with a crack and iterative search technique for damage detection', Finite Elements in Analysis and Design, 38, 537-548 https://doi.org/10.1016/S0168-874X(01)00084-1
- Liu, G.R. and Chen, S.C. (2002), 'A novel technique for inverse identification of distributed stiffness factor in structures', J. Struct. Eng., 254, 823-835
- Loland, O. and Dodds, C.J. (1976), 'Experiencing in developing and operating integrity monitoring system in North Sea', Proc. of the 8th Annual Offshore Technology, Conf. 2, Paper No. 2551, 313-319
- Mares, C. and Surace, C. (1996), 'An application of genetic algorithms to identify damage in elastic structures', J. Sound Vib., 195(2), 195-215 https://doi.org/10.1006/jsvi.1996.0416
- Morassi, A (2001), 'Identification of a crack in a rod based on changes in a pair of natural frequencies', J. Sound Vib., 242(4), 577-596 https://doi.org/10.1006/jsvi.2000.3380
- Nandwana, B.P. and Maiti, S.K. (1994), 'Detection of the location and size of a crack in stepped cantilever beams based on measurements of natural frequencies', J. Sound Vib., 203(3), 435-446 https://doi.org/10.1006/jsvi.1996.0856
- Narkis, Y. (1994), 'Identification of crack location in vibrating simply supported beams', J. Sound Vib., 172(4), 549-558 https://doi.org/10.1006/jsvi.1994.1195
- Nikolakopoulos, P., Katsareas, D. and Papadopoulos, C. (1997), 'Crack identification in frame structures', J. Comput. Struct., 64(1), 389-406 https://doi.org/10.1016/S0045-7949(96)00120-4
- Ostachowicz, W.M. and Krawczuk, M. (1991), 'Analysis of the effect of cracks on the natural frequencies of a cantilever beam', J. Sound Vib., 150(2), 191-201 https://doi.org/10.1016/0022-460X(91)90615-Q
- Pandey, A.K., Biswas, M. and Samman, M.M. (1991), 'Damage detection from changes in curvature mode shapes', J. Sound Vib., 145(2),321-332 https://doi.org/10.1016/0022-460X(91)90595-B
- Pandey, A.K. and Biswas, M. (1994), 'Damage detection in structures using changes in flexibility', J. Sound Vib., 169(1), 3-17 https://doi.org/10.1006/jsvi.1994.1002
- Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986), 'Learning internal representations by error back-propagation', Parallel Distributed Processing Exploration in the Microstructure of Cognition, 1, 318-362
- Ruotolo, R. and Surace, C. (1997), 'Damage assessment of multiple cracked beams: Numerical results and experimental validation', J. Sound Vib., 206(4), 567-588 https://doi.org/10.1006/jsvi.1997.1109
- Sanayei, M. and Onipede, O. (1991), 'Damage assessment of structures using static test data', AIAA J., 29, 1174-1179 https://doi.org/10.2514/3.10720
- Suh, M.W., Shim, M.B. and Kim, M.Y. (2000), 'Crack identification using hybrid neuro-genetic technique', J. Sound Vib., 238(4), 617-635 https://doi.org/10.1006/jsvi.2000.3089
- Szewczyk, Z.P. and Hajela, P. (1994), 'Damage detection in structures based on feature sensitive neural networks', J. Computing in Civil Eng., ASCE, 8, 163-178 https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(163)
- Tsou, P. and Shen, M.H. (1994), 'Structural damage detection and identification using neural networks', AIAA J, 32, 176-183 https://doi.org/10.2514/3.11964
- Wahab, M.M.A. and Roeck, G.D. (1999), 'Damage detection in bridges using modal curvatures: Application to a real damage scenario', J. Sound Vib., 226, 217-235 https://doi.org/10.1006/jsvi.1999.2295
- Wu, X., Ghaboussi, J. and Garrett, J.H. (1992), 'Use of neural networks in detection of structural damage', Comput. Struct., 42, 649-659 https://doi.org/10.1016/0045-7949(92)90132-J
- Yang, J.C.S., Tsai, T., Pavlin, V, Chen, J. and Tsai, W.H. (1985), 'Structural damage detection by the system identification technique', Shock and Vibration Bulletin, 55, 57-66
Cited by
- Bird mating optimizer for structural damage detection using a hybrid objective function vol.35, 2017, https://doi.org/10.1016/j.swevo.2017.02.006
- A two-step approach for damage detection in beam based on influence line and bird mating optimizer vol.14, 2017, https://doi.org/10.21595/vp.2017.19211
- Crack Assessment in Frame Structures Using Modal Data and Unified Particle Swarm Optimization Technique vol.17, pp.5, 2014, https://doi.org/10.1260/1369-4332.17.5.747
- Damage assessment of truss structures from changes in natural frequencies using ant colony optimization vol.218, pp.19, 2012, https://doi.org/10.1016/j.amc.2012.03.031
- A Time-Domain Structural Damage Detection Method Based on Improved Multiparticle Swarm Coevolution Optimization Algorithm vol.2014, 2014, https://doi.org/10.1155/2014/232763
- A hybrid multiple damages detection method for plate structures vol.60, pp.5, 2017, https://doi.org/10.1007/s11431-016-9002-0
- An improved CSS for damage detection of truss structures using changes in natural frequencies and mode shapes vol.80, 2015, https://doi.org/10.1016/j.advengsoft.2014.09.010
- A comparative study on crack identification of structures from the changes in natural frequencies using GA and PSO vol.31, pp.7, 2014, https://doi.org/10.1108/EC-02-2013-0061
- Vibration-based Damage Identification Methods: A Review and Comparative Study vol.10, pp.1, 2011, https://doi.org/10.1177/1475921710365419
- Damage assessment from curvature mode shape using unified particle swarm optimization vol.52, pp.2, 2014, https://doi.org/10.12989/sem.2014.52.2.307
- Structural damage assessment using FRF employing particle swarm optimization vol.219, pp.20, 2013, https://doi.org/10.1016/j.amc.2013.04.016
- Differential Evolution: An Inverse Approach for Crack Detection vol.2013, 2013, https://doi.org/10.1155/2013/321931
- Modal parameter based inverse approach for structural joint damage assessment using unified particle swarm optimization vol.242, 2014, https://doi.org/10.1016/j.amc.2014.05.115
- A new intelligent algorithm for damage detection in frames via modal properties vol.9, pp.4, 2017, https://doi.org/10.1080/17508975.2016.1161584
- A flexibility method for structural damage identification using continuous ant colony optimization vol.11, pp.2, 2015, https://doi.org/10.1108/MMMS-05-2014-0027
- Application of Structural Health Monitoring System for Reliable Seismic Performance Evaluation of Infrastructures vol.15, pp.6, 2012, https://doi.org/10.1260/1369-4332.15.6.955
- Vibration Based Structural Damage Detection Technique using Particle Swarm Optimization with Incremental Swarm Size vol.13, pp.3, 2012, https://doi.org/10.5139/IJASS.2012.13.3.323
- Correlation-Based Damage Detection for Complicated Truss Bridges Using Multi-Layer Genetic Algorithm vol.15, pp.5, 2012, https://doi.org/10.1260/1369-4332.15.5.693
- Structural Damage Detection Based on Modal Parameters Using Continuous Ant Colony Optimization vol.2014, 2014, https://doi.org/10.1155/2014/174185
- Damage detection based on MCSS and PSO using modal data vol.15, pp.5, 2015, https://doi.org/10.12989/sss.2015.15.5.1253
- Experimental and numerical studies on a test method for damage diagnosis of stay cables vol.20, pp.2, 2017, https://doi.org/10.1177/1369433216659927
- Structural damage identification using piezoelectric impedance measurement with sparse inverse analysis vol.27, pp.3, 2018, https://doi.org/10.1088/1361-665X/aaacba
- Global Seismic Damage Model of RC Structures Based on Structural Modal Properties vol.144, pp.10, 2018, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002160
- Structural damage detection using time domain responses and an optimization method pp.1741-5985, 2019, https://doi.org/10.1080/17415977.2018.1505884
- A Modified Support Vector Regression Approach for Failure Analysis in Beam-Like Structures vol.18, pp.4, 2018, https://doi.org/10.1007/s11668-018-0494-5
- A two-step method for damage identification in beam structures based on influence line difference and acceleration data vol.10, pp.7, 2018, https://doi.org/10.1177/1687814018787404
- Ant lion optimisation algorithm for structural damage detection using vibration data vol.9, pp.1, 2019, https://doi.org/10.1007/s13349-018-0318-z
- A new damage index for detecting sudden change of structural stiffness vol.26, pp.3, 2005, https://doi.org/10.12989/sem.2007.26.3.315
- Damage detection in truss structures using a flexibility based approach with noise influence consideration vol.27, pp.5, 2005, https://doi.org/10.12989/sem.2007.27.5.625
- Study of the structural damage identification method based on multi-mode information fusion vol.31, pp.3, 2005, https://doi.org/10.12989/sem.2009.31.3.333
- Periodic seismic performance evaluation of highway bridges using structural health monitoring system vol.31, pp.5, 2009, https://doi.org/10.12989/sem.2009.31.5.527
- Damage assessment of beams from changes in natural frequencies using ant colony optimization vol.45, pp.3, 2013, https://doi.org/10.12989/sem.2013.45.3.391
- A novel heuristic search algorithm for optimization with application to structural damage identification vol.19, pp.4, 2005, https://doi.org/10.12989/sss.2017.19.4.449
- Damage Detection in the Truss Using Modified Dynamic Characteristics vol.30, pp.1, 2005, https://doi.org/10.5050/ksnve.2020.30.1.086
- Performance Studies of 10 Metaheuristic Techniques in Determination of Damages for Large-Scale Spatial Trusses from Changes in Vibration Responses vol.34, pp.2, 2005, https://doi.org/10.1061/(asce)cp.1943-5487.0000872
- A fast-convergent approach for damage assessment using CMA-ES optimization algorithm and modal parameters vol.10, pp.3, 2020, https://doi.org/10.1007/s13349-020-00397-1
- A hybrid identification method on butterfly optimization and differential evolution algorithm vol.26, pp.3, 2005, https://doi.org/10.12989/sss.2020.26.3.345
- Nondestructive health monitoring techniques for composite materials: A review vol.29, pp.5, 2021, https://doi.org/10.1177/0967391120921701
- A Novel Optimization Algorithm Based on Modal Force Information for Structural Damage Identification vol.21, pp.7, 2021, https://doi.org/10.1142/s0219455421501005
- Damage detection in structures using Particle Swarm Optimization combined with Artificial Neural Network vol.28, pp.1, 2021, https://doi.org/10.12989/sss.2021.28.1.001
- Output-only structural damage detection under multiple unknown white noise excitations vol.79, pp.3, 2005, https://doi.org/10.12989/sem.2021.79.3.327
- Delamination detection in composite plates using random forests vol.278, pp.None, 2005, https://doi.org/10.1016/j.compstruct.2021.114676