• 제목/요약/키워드: stiffened

검색결과 592건 처리시간 0.023초

Buckling Analysis of Grid-Stiffened Composite Plates Using Hybrid Element with Drilling D.O.F.

  • Cho, Maenghyo;Kim, Won-Bae
    • Computational Structural Engineering : An International Journal
    • /
    • 제3권1호
    • /
    • pp.19-29
    • /
    • 2003
  • In the present study, finite element linear buckling analysis is performed for grid-stiffened composite plates. A hybrid element with drilling degrees of freedom is employed to reduce the effect of the sensitivity of mesh distortion and to match the degrees of freedom between skins and stiffeners. The preliminary static stress distribution is analyzed for the determination of accurate load distribution. Parametric study of grid structures is performed and three types of buckling modes are observed. The maximum limit of buckling load was found at the local skin-buckling mode. In order to maximize buckling loads, stiffened panels need to be designed to be buckled in skin-buckling mode.

  • PDF

직교 이방성으로 보강된 평판 구조물 해석을 위한 새로운 방법 연구 (A New Grillage Method for Analyzing Orthogonally Stiffened Plated Structures)

  • 조규남
    • 전산구조공학
    • /
    • 제2권2호
    • /
    • pp.101-112
    • /
    • 1989
  • 직교 이방성으로 보강된 평판 구조물 해석을 위한 방법제시가 본 논문의 주요 내용이다. 이 방법에서는 변형된 정적 압축법을 이용하여 직교 이방성으로 보강된 평판 구조물과 동등한 강성을 가지는 2차원 그릴리지 구조물을 생성하여 해석에 응용하고 있다. 대표적인 구조물을 선택하여 이론을 적용시켜 해석을 한 결과 직교 이방성으로 보강된 평판 구조물 해석에는 본 논문의 방법이 매우 효과적임이 입증되었다.

  • PDF

Nonlinear bending analysis of laminated composite stiffened plates

  • Patel, Shuvendu N.
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.867-890
    • /
    • 2014
  • This paper deals with the geometric nonlinear bending analysis of laminated composite stiffened plates subjected to uniform transverse loading. The eight-noded degenerated shell element and three-noded degenerated curved beam element with five degrees of freedom per node are adopted in the present analysis to model the plate and stiffeners respectively. The Green-Lagrange strain displacement relationship is adopted and the total Lagrangian approach is taken in the formulation. The convergence study of the present formulation is carried out first and the results are compared with the results published in the literature. The stiffener element is reformulated taking the torsional rigidity in an efficient manner. The effects of lamination angle, depth of stiffener and number of layers, on the bending response of the composite stiffened plates are considered and the results are discussed.

Ultimate torsional strength of cracked stiffened box girders with a large deck opening

  • Ao, Lei;Wang, De-Yu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권4호
    • /
    • pp.360-374
    • /
    • 2016
  • The present paper studies the ultimate torsional strength of stiffened box girders with large deck opening due to the influence of cracks. Three types of hull girders with different spans are provided for comparison. Potential parameters which may have effects on the torsional strength including the mesh refinement, initial deflection, material strain hardening, geometric properties of crack and stiffener are discussed. Two new concepts that play an significant role in the ultimate strength research of damaged box girders are introduced, one of which is the effective residual section (ERS), the other is the initial damage of the failure zone (IDFZ) for intact structures. New simple formulas for predicting the residual ultimate torsional strength of cracked stiffened box girders are derived on the basis of the two new concepts.

The Stacking Sequence Optimization of Stiffened Laminated Curved Panels with Different Loading and Stiffener Spacing

  • Kim Cheol;Yoon In-Se
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1541-1547
    • /
    • 2006
  • An efficient procedure to obtain the optimal stacking sequence and the minimum weight of stiffened laminated composite curved panels under several loading conditions and stiffener layouts has been developed based on the finite element method and the genetic algorithm that is powerful for the problem with integer variables. Often, designing composite laminates ends up with a stacking sequence optimization that may be formulated as an integer programming problem. This procedure is applied for a problem to find the stacking sequence having a maximum critical buckling load factor and the minimum weight. The object function in this case is the weight of a stiffened laminated composite shell. Three different types of stiffener layouts with different loading conditions are investigated to see how these parameters influence on the stacking sequence optimization of the panel and the stiffeners. It is noticed from the results that the optimal stacking sequence and lay-up angles vary depending on the types. of loading and stiffener spacing.

캔틸레버 원통형 쉘의 단부보강 해석 (Analysis of Cantilever Cylindrical Shells with Edge-Stiffeners)

  • 박원태;손병직
    • 한국안전학회지
    • /
    • 제20권4호
    • /
    • pp.78-86
    • /
    • 2005
  • In this study, cantilever cylindrical shells with edge-stiffeners are analyzed. A versatile 4-node flat shell element which is useful for the analysis of shell structures is used. An improved flat shell element is established by the combined use of the addition of non-conforming displacement modes and the substitute shear strain fields. Three models by load conditions are considered. Model A, B and C are loaded by point load at the free edge, line load and external pressure respectively. A various parameter examples are presented to obtain proper stiffened length and stiffened thickness of edge-stiffeners. It is shown that the thickness of shell can be reduced more than 50% for Model A, about $20{\sim}30%$ for Model B by appropriate edge-stiffeners.

MFC 작동기를 이용한 보강 Hull 구조물의 능동 진동 제어 (Vibration Control of Stiffened Hull Structure Using MFC Actuator)

  • 전준철;손정우;최승복
    • 한국소음진동공학회논문집
    • /
    • 제21권7호
    • /
    • pp.643-649
    • /
    • 2011
  • This work presents an active vibration control of a stiffened hull structure using a flexible macro fiber composite(MFC) actuator. As first step, the governing equation of the hull structure is derived in a matrix form and its dynamic characteristics such as natural frequency are obtained via a finite element analysis(FEA). The natural frequencies obtained from the FEA are compared with those determined from experimental measurement. After formulating the control model in a state space representation, an optimal controller is designed in order to attenuate the vibration of the stiffened hull structure. The controller is then empirically realized through dSPACE and control responses are evaluated in time domain.

補剛平板의 一般理論 硏究 (Study on the General Theory of Stiffened Plates)

  • 김천욱;원종진
    • 대한기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.287-295
    • /
    • 1987
  • 본 논문에서는 보강평간이론의 일반화를 위하여 해석모델을 비대칭 사교보강 평판으로 설정하였으며 응력과 변형율의 관계식을 수정도심을 이용하여 표시하였다. 힘의 평형관계로부터 직교축방향 곡률의 영향을 고려한 수정도심의 위치를 산정하였으 며 변형에너지법에 의하여 보강재교차부의 역학적 특성을 고려한 판의 처짐의 4계편미 분방정식을 유도하였다. 또한, 본 이론의 정밀성을 입증하기 위하여 진동법에 의한 실험 등가강성을 산정하고 이론치와 비교, 검토하였다.

Ultimate strength of stiffened panels subjected to non-uniform thrust

  • Anyfantis, Konstantinos N.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.325-342
    • /
    • 2020
  • The current study is focused on the evaluation of the ultimate strength of stiffened panels found in ship hull structures that are subjected to combined uniaxial thrust, in-plane and out-of-plane bending moments. This loading condition, which is in general ignored when performing buckling checks, applies to representative control geometries (stiffener with attached plating) as a consequence of the linearly varying normal stresses along the ship's depth induced by the hull-girder vertical bending moment. The problem is generalized by introducing a non-uniform thrust described by a displacement ratio and rotation angle and by introducing the slenderness ratios, within the practical range of interest. The formed design space is explored through methods sourcing from Design of Experiments and by applying non-linear finite element procedures. Surrogate empirical models have been constructed through regression analysis and Response Surface Methods. An additional empirical model is provided to the literature for predicting the ultimate strength under uniaxial thrust. The numerical experimentation has shown that is a significant influence on the ultimate strength of stiffened panels as the thrust non-uniformity increases.

초고속 충돌을 받는 모자형 보강 패널의 충격 저감 특성에 관한 연구 (A Study of Impact Reduction Characteristics of Hat-Shaped Stiffened Panel Under Hypervelocity Impact)

  • 양태호;이영신
    • 대한기계학회논문집A
    • /
    • 제37권7호
    • /
    • pp.929-935
    • /
    • 2013
  • 본 논문은 사각 보강 패널에 사용되는 모자형 보강재의 크기 최적화에 대한 결과를 제시하였다. 보강 패널은 1500 ~ 2500 m/s 의 속도를 가지는 발사체와 충돌한다. 모자형 보강재의 크기를 결정하기 위해서 크기 최적화가 수행되었다. 크기 최적화를 수행하기 위해서는 3 개의 함수들로 구성되어 있다. 이 함수들은 목적함수, 제한함수 그리고 설계 함수로 이루어져 있다. 목적 함수는 보강 패널의 1 차 고유 진동수의 최대화가 되도록 하는 것이다. 제함 함수는 보강재의 부피가 사각 패널 부피의 10 % 이내가 되도록 하는 것이며, 설계 변수로는 모자형 보강재의 치수가 된다. 최적화된 모자형 보강재를 이용하한 보강 패널을 사용하여 초고속 충돌에 대한 시뮬레이션을 수행하였으며, 최적화된 보강재에 대해서 속도와 운동 에너지 변화에 대한 결과를 얻었다. 보강 패널의 충돌 저감을 평가하기 위해서 발사체의 운동 에너지와 속도를 무차원화 계산을 수행하여 비교 분석 하였다.