DOI QR코드

DOI QR Code

Ultimate torsional strength of cracked stiffened box girders with a large deck opening

  • Ao, Lei (State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University) ;
  • Wang, De-Yu (State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University)
  • Received : 2015.12.18
  • Accepted : 2016.04.15
  • Published : 2016.07.30

Abstract

The present paper studies the ultimate torsional strength of stiffened box girders with large deck opening due to the influence of cracks. Three types of hull girders with different spans are provided for comparison. Potential parameters which may have effects on the torsional strength including the mesh refinement, initial deflection, material strain hardening, geometric properties of crack and stiffener are discussed. Two new concepts that play an significant role in the ultimate strength research of damaged box girders are introduced, one of which is the effective residual section (ERS), the other is the initial damage of the failure zone (IDFZ) for intact structures. New simple formulas for predicting the residual ultimate torsional strength of cracked stiffened box girders are derived on the basis of the two new concepts.

Keywords

References

  1. Alinia, M.M., Hosseinzadeh, S.A.A., Habashi, H.R., 2007. Influence of central cracks on buckling and post-buckling behaviour of shear panels. Thin-Walled Struct. 45 (4), 422-431. https://doi.org/10.1016/j.tws.2007.03.003
  2. Benson, S., AbuBakar, A., Dow, R.S., 2013. A comparison of computational methods to predict the progressive collapse behaviour of a damaged box girder. Eng. Struct. 48 (0), 266-280. https://doi.org/10.1016/j.engstruct.2012.09.031
  3. Brighenti, R., Carpinteri, A., 2011. Buckling and fracture behaviour of cracked thin plates under shear loading. Mater. Des. 32 (3), 1347-1355. https://doi.org/10.1016/j.matdes.2010.09.018
  4. Brighenti, R., 2005. Buckling of cracked thin-plates under tension or compression. Thin-Walled Struct. 43 (2), 209-224. https://doi.org/10.1016/j.tws.2004.07.006
  5. Fujikubo, M., et al., 2005. Estimation of ultimate strength of continuous stiffened panel under combined transverse thrust and lateral pressure part 2: continuous stiffened panel. Mar. Struct. 18 (5-6), 411-427. https://doi.org/10.1016/j.marstruc.2006.01.001
  6. Gordo, J.M., Guedes Soares, C., 2014. Experimental analysis of the effect of frame spacing variation on the ultimate bending moment of box girders. Mar. Struct. 37, 111-134. https://doi.org/10.1016/j.marstruc.2014.03.003
  7. Gordo, J.M., Soares, C.G., 2009. Tests on ultimate strength of hull box girders made of high tensile steel. Mar. Struct. 22 (4), 770-790. https://doi.org/10.1016/j.marstruc.2009.07.002
  8. Khedmati, M.R., Zareei, M.R., Rigo, P., 2010. Empirical formulations for estimation of ultimate strength of continuous stiffened aluminium plates under combined in-plane compression and lateral pressure. Thin Walled Struct. 48 (3), 274-289. https://doi.org/10.1016/j.tws.2009.10.001
  9. Kim, K., Yoo, C.H., 2008. Ultimate strengths of steel rectangular box beams subjected to combined action of bending and torsion. Eng. Struct. 30 (6), 1677-1687. https://doi.org/10.1016/j.engstruct.2007.11.011
  10. Nishihara, S., 1984. Ultimate longitudinal strength of mid-ship cross section. Nav. Archit. Ocean Eng. 22, 200-214.
  11. Ozguc, O., Das, P.K., Barltrop, N., 2006. A proposed method to evaluate hull girder ultimate strength. Ships Offshore Struct. 1 (4), 335-345. https://doi.org/10.1533/saos.2006.0132
  12. Paik, J.K., Kim, B.J., Seo, J.K., 2008a. Methods for ultimate limit state assessment of ships and ship-shaped offshore structures: part III hull girders. Ocean. Eng. 35 (2), 281-286. https://doi.org/10.1016/j.oceaneng.2007.08.008
  13. Paik, J.K., Kim, B.J., Seo, J.K., 2008b. Methods for ultimate limit state assessment of ships and ship-shaped offshore structures: part I-unstiffened plates. Ocean. Eng. 35 (2), 261-270. https://doi.org/10.1016/j.oceaneng.2007.08.004
  14. Paik, J.K., Kim, B.J., 2002. Ultimate strength formulations for stiffened panels under combined axial load, in-plane bending and lateral pressure: a benchmark study. Thin Walled Struct. 40 (1), 45-83. https://doi.org/10.1016/S0263-8231(01)00043-X
  15. Paik, J.K., Lee, M.S., 2005. A semi-analytical method for the elastic-plastic large deflection analysis of stiffened panels under combined biaxial compression/tension, biaxial in-plane bending, edge shear, and lateral pressure loads. Thin Walled Struct. 43 (3), 375-410. https://doi.org/10.1016/j.tws.2004.07.022
  16. Paik, J.K., Thayamballi, A.K., 2006. Some recent developments on ultimate limit state design technology for ships and offshore structures. Ships Offshore Struct. 1 (2), 99-116. https://doi.org/10.1533/saos.2006.0110
  17. Paik, J.K., 2007. Characteristics of welding induced initial deflections in welded aluminum plates. Thin-Walled Struct. 45 (5), 493-501. https://doi.org/10.1016/j.tws.2007.04.009
  18. Paik, J.K., 2009. Residual ultimate strength of steel plates with longitudinal cracks under axial compression-nonlinear finite element method investigations. Ocean. Eng. 36 (3-4), 266-276. https://doi.org/10.1016/j.oceaneng.2008.12.001
  19. Paik, J.K., Kim, B.J., Seo, J.K., 2008c. Methods for ultimate limit state assessment of ships and ship-shaped offshore structures: part II stiffened panels. Ocean. Eng. 35 (2), 271-280. https://doi.org/10.1016/j.oceaneng.2007.08.007
  20. Paik, J.K., Satish Kumar, Y.V., Lee, J.M., 2005. Ultimate strength of cracked plate elements under axial compression or tension. Thin Walled Struct. 43 (2), 237-272. https://doi.org/10.1016/j.tws.2004.07.010
  21. Pan, Z., Cheng, Y., Liu, J., 2013. A semi-analytical analysis of the elastic buckling of cracked thin plates under axial compression using actual nonuniform stress distribution. Thin Walled Struct. 73, 229-241. https://doi.org/10.1016/j.tws.2013.08.007
  22. Qi, E., Cui, W., 2006. Analytical method for ultimate strength calculations of intact and damaged ship hulls. Ships Offshore Struct. 1 (1), 153-163. https://doi.org/10.1533/saos.2006.0121
  23. Saad-Eldeen, S., Garbatov, Y., Guedes Soares, C., 2012. Analysis of plate deflections during ultimate strength experiments of corroded box girders. Thin Walled Struct. 54, 164-176. https://doi.org/10.1016/j.tws.2012.01.010
  24. Saad-Eldeen, S., Garbatov, Y., Guedes Soares, C., 2013. Effect of corrosion severity on the ultimate strength of a steel box girder. Eng. Struct. 49, 560-571. https://doi.org/10.1016/j.engstruct.2012.11.017
  25. Seifi, R., Khoda-yari, N., 2011. Experimental and numerical studies on buckling of cracked thin-plates under full and partial compression edge loading. Thin Walled Struct. 49 (12), 1504-1516. https://doi.org/10.1016/j.tws.2011.07.010
  26. Senjanovic, I., Vladimir, N., Tomic, M., Hadzic, N., Malenica, S., 2014. Some aspects of structural modelling and restoring stiffness in hydroelastic analysis of large container ships. Ships Offshore Struct. 9 (2), 199-217. https://doi.org/10.1080/17445302.2012.762728
  27. Shanmugam, N.E., et al., 2014. Experimental studies on stiffened plates under in-plane load and lateral pressure. Thin Walled Struct. 80, 22-31. https://doi.org/10.1016/j.tws.2014.02.026
  28. Shi, G.J., Wang, D.Y., 2012. Ultimate strength model experiment regarding a container ship's hull structures. Ships Offshore Struct. 7 (2), 1-20. https://doi.org/10.1080/17445302.2012.659084
  29. Sun, H.-H., Soares, C.G., 2003. An experimental study of ultimate torsional strength of a ship-type hull girder with a large deck opening. Mar. Struct. 16 (1), 51-67. https://doi.org/10.1016/S0951-8339(02)00051-5
  30. Tanaka, S., Yanagihara, D., Yasuoka, A., 2014. Evaluation of ultimate strength of stiffened panels under longitudinal thrust. Mar. Struct. 36, 21-50. https://doi.org/10.1016/j.marstruc.2013.11.002
  31. Tanaka, Y., Ogawa, H., Tatsumi, A., Fujikubo, M., 2015. Analysis method of ultimate hull girder strength under combined loads. Ships Offshore Struct. 10 (5), 587-598.
  32. Tekgoz, M., Garbatov, Y., Guedes Soares, C., 2015. Ultimate strength assessment of welded stiffened plates. Eng. Struct. 84, 325-339. https://doi.org/10.1016/j.engstruct.2014.12.001
  33. Ueda, Y., Rashed, S.M.H., Paik, J.K., 1995. Buckling and ultimate strength interaction in plates and stiffened panels under combined in-plane biaxial and shearing forces. Mar. Struct. 8 (1), 1-36. https://doi.org/10.1016/0951-8339(95)90663-F
  34. Vhanmane, S., Bhattacharya, B., 2008. Estimation of ultimate hull girder strength with initial imperfections. Ships Offshore Struct. 3 (3), 149-158. https://doi.org/10.1080/17445300802204389
  35. Wang, F., et al., 2015. Ultimate shear strength of intact and cracked stiffened panels. Thin Walled Struct. 88, 48-57. https://doi.org/10.1016/j.tws.2014.12.001
  36. Xu, M.C., Garbatov, Y., Soares, C.G., 2014. Thin-walled structures residual ultimate strength assessment of stiffened panels with locked cracks. Thin Walled Struct. 85, 398-410. https://doi.org/10.1016/j.tws.2014.09.011
  37. Yao, T., Fujikubo, M., Yanagihara, D., Varghese, B., 1998. Influences of welding imperfections on buckling/ultimate strength of ship bottom plating subjected to combined bi-axial & lateral pressure. Thin walled Struct. 425-432.
  38. Yao, T., 2003. Hull girder strength. Mar. Struct. 16, 1-13. https://doi.org/10.1016/S0951-8339(02)00052-7
  39. Zhang, S., Khan, I., 2009. Buckling and ultimate capability of plates and stiffened panels in axial compression. Mar. Struct. 22 (4), 791-808. https://doi.org/10.1016/j.marstruc.2009.09.001

Cited by

  1. A Method to Estimate Dynamic Buckling Response of an Unstiffened Plate Elastically Restrained Along All Edges Under In-Plane Impact vol.21, pp.2, 2016, https://doi.org/10.1142/s0219455421500218