• Title/Summary/Keyword: stereo system

Search Result 794, Processing Time 0.026 seconds

Survey of coastal topography using images from a single UAV (단일 UAV를 이용한 해안 지형 측량)

  • Noh, Hyoseob;Kim, Byunguk;Lee, Minjae;Park, Yong Sung;Bang, Ki Young;Yoo, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1027-1036
    • /
    • 2023
  • Coastal topographic information is crucial in coastal management, but point measurment based approeaches, which are labor intensive, are generally applied to land and underwater, separately. This study introduces an efficient method enabling land and undetwater surveys using an unmanned aerial vehicle (UAV). This method involves applying two different algorithms to measure the topography on land and water depth, respectively, using UAV imagery and merge them to reconstruct whole coastal digital elevation model. Acquisition of the landside terrain is achieved using the Structure-from-Motion Multi-View Stereo technique with spatial scan imagery. Independently, underwater bathymetry is retrieved by employing a depth inversion technique with a drone-acquired wave field video. After merging the two digital elevation models into a local coordinate, interpolation is performed for areas where terrain measurement is not feasible, ultimately obtaining a continuous nearshore terrain. We applied the proposed survey technique to Jangsa Beach, South Korea, and verified that detailed terrain characteristics, such as berm, can be measured. The proposed UAV-based survey method has significant efficiency in terms of time, cost, and safety compared to existing methods.

The Generation of 3D Geospatial Data using Digital Photogrammetry System (수치사진측량시스템을 이용한 3차원 공간데이터 구축)

  • Noh, Myoung-Jong;Cho, Woo-Sug
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.29-34
    • /
    • 2005
  • Aerial photogrammetry, which is one of the most frequent used technology in mapping and surveying, has been appreciated for its work flow and accuracy to generate 2D and 3D geospatial data. In aerial photograrnrnetry, more than two photographs are taken over the same target area in different position with overlap. Using these photographs and minimum number of ground control points, 3D stereo model is so formed that the ground surface in reality is reconstructed through analogue/analytical plotter or digital photogrammetry system. In case of digital photogrammetry system, 3D geospatial data could be automatically extracted in partial. Recently, in the advent of aerial digital camera such as ADS40 and DMC, digital photogrammetry system will be in the frist place for generating 3D geospatial data. In this paper, we experimentally generated 3D geospatial data using digital photograrnrnetry system in the aspect of work flow.

  • PDF

Development of the Practical System for the Automated Damage Assessment (재해 피해조사 자동화를 위한 실용시스템 구축)

  • Jin, Kyeonghyeok;Kim, Youngbok;Choi, Woojung;Shim, Jaehyun
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.2
    • /
    • pp.73-78
    • /
    • 2008
  • Recently, large scale natural disasters such as floods and typhoons due to climate change have been occurring all over the world causing severe damages. Among the various efforts to reduce and recover damages, recently, advanced information technology and remote sensing techniques are applied in disaster management. In this study, a real-time automated damage estimation system using information technology and spatial imagery was developed to accomplish prompt and accurate disaster damage estimation. This system is able to estimate the damage amounts of public facilities such as roads, rivers, bridges automatically through spatial imageries including ground based digital images, aerial photos, satellite images of disaster sites. Based on these spatial imageries, the damage amounts are analyzed in the Web-GIS based analysis system. Consequently, the digital damage reports such as digital disaster information sheets and damage maps can be made promptly and accurately. This system can be a useful tool to carry out prompt disaster damage estimation and efficient disaster recovery.

  • PDF

Human Tracking and Body Silhouette Extraction System for Humanoid Robot (휴머노이드 로봇을 위한 사람 검출, 추적 및 실루엣 추출 시스템)

  • Kwak, Soo-Yeong;Byun, Hye-Ran
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6C
    • /
    • pp.593-603
    • /
    • 2009
  • In this paper, we propose a new integrated computer vision system designed to track multiple human beings and extract their silhouette with an active stereo camera. The proposed system consists of three modules: detection, tracking and silhouette extraction. Detection was performed by camera ego-motion compensation and disparity segmentation. For tracking, we present an efficient mean shift based tracking method in which the tracking objects are characterized as disparity weighted color histograms. The silhouette was obtained by two-step segmentation. A trimap is estimated in advance and then this was effectively incorporated into the graph cut framework for fine segmentation. The proposed system was evaluated with respect to ground truth data and it was shown to detect and track multiple people very well and also produce high quality silhouettes. The proposed system can assist in gesture and gait recognition in field of Human-Robot Interaction (HRI).

Vision-based Walking Guidance System Using Top-view Transform and Beam-ray Model (탑-뷰 변환과 빔-레이 모델을 이용한 영상기반 보행 안내 시스템)

  • Lin, Qing;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.12
    • /
    • pp.93-102
    • /
    • 2011
  • This paper presents a walking guidance system for blind pedestrians in an outdoor environment using just one single camera. Unlike many existing travel-aid systems that rely on stereo-vision, the proposed system aims to get necessary information of the road environment by using just single camera fixed at the belly of the user. To achieve this goal, a top-view image of the road is used, on which obstacles are detected by first extracting local extreme points and then verified by the polar edge histogram. Meanwhile, user motion is estimated by using optical flow in an area close to the user. Based on these information extracted from image domain, an audio message generation scheme is proposed to deliver guidance instructions via synthetic voice to the blind user. Experiments with several sidewalk video-clips show that the proposed walking guidance system is able to provide useful guidance instructions under certain sidewalk environments.

A Study on Design and Implementation of Speech Recognition System Using ART2 Algorithm

  • Kim, Joeng Hoon;Kim, Dong Han;Jang, Won Il;Lee, Sang Bae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.149-154
    • /
    • 2004
  • In this research, we selected the speech recognition to implement the electric wheelchair system as a method to control it by only using the speech and used DTW (Dynamic Time Warping), which is speaker-dependent and has a relatively high recognition rate among the speech recognitions. However, it has to have small memory and fast process speed performance under consideration of real-time. Thus, we introduced VQ (Vector Quantization) which is widely used as a compression algorithm of speaker-independent recognition, to secure fast recognition and small memory. However, we found that the recognition rate decreased after using VQ. To improve the recognition rate, we applied ART2 (Adaptive Reason Theory 2) algorithm as a post-process algorithm to obtain about 5% recognition rate improvement. To utilize ART2, we have to apply an error range. In case that the subtraction of the first distance from the second distance for each distance obtained to apply DTW is 20 or more, the error range is applied. Likewise, ART2 was applied and we could obtain fast process and high recognition rate. Moreover, since this system is a moving object, the system should be implemented as an embedded one. Thus, we selected TMS320C32 chip, which can process significantly many calculations relatively fast, to implement the embedded system. Considering that the memory is speech, we used 128kbyte-RAM and 64kbyte ROM to save large amount of data. In case of speech input, we used 16-bit stereo audio codec, securing relatively accurate data through high resolution capacity.

Basic Study for the Development of Teat Cup Handling System Operated by a Robot (로봇에 의한 유두컵 착탈 시스템 개발을 위한 기초 연구)

  • 이영진;장동일
    • Journal of Animal Environmental Science
    • /
    • v.6 no.2
    • /
    • pp.105-112
    • /
    • 2000
  • The objective of this study was to determine the teat locations and to develop a teat cup handling system operated by a robot. The results of this study were summarized as follows: 1. The teat cup attaching and detaching operation system developed in this study consists of a control computer, a five-dimensional robot(PERFORMER-MK2), a DC servo gripper, a robot controller, two CCD-cameras (WV-vp410), an image grabber board(DT3153), a model cow, and a teat cup unit. 2. The coordinates of teat locations were measured by a stereo image processing unit. The error ranges of teats coordinates measured were (x, y, z) = (0.83, 1.95, 0.81) mm. When those were transferred into the Robot Coordinate System(RCS) coordinate, the total error ranges measured were x = 0.9 mm, y = 2.0 mm, z = 0.9 mm. 3. The rates of success of teat cup attaching and detaching operation by a robot system were 91.5% on average; the operation time needed were 27.8 sec. Total working hours for the teat cup handling including image processing were 86.1 sec.

  • PDF

A Study of Pedestrian Navigation Service System for Visual Disabilities (시각장애인용 길안내 서비스 시스템에 대한 연구)

  • Jang, Young Gun;Cha, J.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.4
    • /
    • pp.315-321
    • /
    • 2017
  • This paper is a study on the design and realization of Pedestrian navigation service system for the visually impaired. As it is an user interface considering visually impaired, voice recognition functioned smartphone was used as the input tool and the Osteoacusis headset, which can vocally guide directions while recognizing the surrounding environment sound, was used as the output tool. Unlike the pre-existing pedestrian navigation smartphone apps, the developed system guides walking direction by the scale of the left and right stereo sound of the headset wearing, and the voice guidance about the forked or curved path is given several meters before according to the speed of the user, and the user is immediately warned of walking opposite direction or proceeding off the path. The system can acquire stable and reliable directional information using the motion tracker with the dynamic heading accuracy of 1.5 degrees. In order to overcome GPS position error, we proposed a robust trajectory planning algorithm for position error. Experimental results for the developed system show that the average directional angle error is 6.82 degrees (standard deviation: 5.98) in the experimental path, which can be stated that it stably navigated the user relatively.

The study of stereoscopic editing process with applying depth information (깊이정보를 활용한 입체 편집 프로세스 연구)

  • Baek, Kwang-Ho;Kim, Min-Seo;Han, Myung-Hee
    • Journal of Digital Contents Society
    • /
    • v.13 no.2
    • /
    • pp.225-233
    • /
    • 2012
  • The 3D stereoscopic image contents have been emerging as the blue chip of the contents market of the next generation since the . However, all the 3D contents created commercially in the country have failed to enter box office. It is because the quality of Korean 3D contents is much lower than that of overseas contents and also current 3D post production process is based on 2D. Considering all these facts, the 3D editing process has connection with the quality of contents. The current 3D editing processes of the production case of are using the way that edits with the system on basis of 2D, followed by checking with 3D display system and modifying, if there are any problems. In order to improve those conditions, I suggest that the 3D editing process contain more objectivity by visualizing the depth data applied in some composition work such as Disparity map, Depth map, and the current 3D editing process. The proposed process has been used in the music drama , comparing with those of the film . The 3D values could be checked among cuts which have been changed a lot since those of , while the 3D value of drew an equal result in general. Since the current process is based on an artist's subjective sense of 3D, it could be changed according to the condition and state of the artist. Furthermore, it is impossible for us to predict the positive range, so it is apprehended that the cubic effect of space might be perverted by showing each different 3D value according to cuts in the same space or a limited space. On the other hand, the objective 3D editing by applying the visualization of depth data can adjust itself to the cubic effect of the same space and the whole content equally, which will enrich the 3D contents. It will even be able to solve some problems such as distortion of cubic effect and visual fatigue, etc.

A New Mapping Algorithm for Depth Perception in 3D Screen and Its Implementation (3차원 영상의 깊이 인식에 대한 매핑 알고리즘 구현)

  • Ham, Woon-Chul;Kim, Seung-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.95-101
    • /
    • 2008
  • In this paper, we present a new smoothing algorithm for variable depth mapping for real time stereoscopic image for 3D display. Proposed algorithm is based on the physical concept, called Laplacian equation and we also discuss the mapping of the depth from scene to displayed image. The approach to solve the problem in stereoscopic image which we adopt in this paper is similar to multi-region algorithm which was proposed by N.Holliman. The main difference thing in our algorithm compared with the N.Holliman's multi-region algorithm is that we use the Laplacian equation by considering the distance between viewer and object. We implement the real time stereoscopic image generation method for OpenGL on the circular polarized LCD screen to demonstrate its real functioning in the visual sensory system in human brain. Even though we make and use artificial objects by using OpenGL to simulate the proposed algorithm we assure that this technology may be applied to stereoscopic camera system not only for personal computer system but also for public broad cast system.