DOI QR코드

DOI QR Code

A Study of Pedestrian Navigation Service System for Visual Disabilities

시각장애인용 길안내 서비스 시스템에 대한 연구

  • 장영건 (청주대학교 컴퓨터정보공학과) ;
  • 차주현 (청주대학교 컴퓨터정보공학과)
  • Received : 2017.08.23
  • Accepted : 2017.11.01
  • Published : 2017.12.31

Abstract

This paper is a study on the design and realization of Pedestrian navigation service system for the visually impaired. As it is an user interface considering visually impaired, voice recognition functioned smartphone was used as the input tool and the Osteoacusis headset, which can vocally guide directions while recognizing the surrounding environment sound, was used as the output tool. Unlike the pre-existing pedestrian navigation smartphone apps, the developed system guides walking direction by the scale of the left and right stereo sound of the headset wearing, and the voice guidance about the forked or curved path is given several meters before according to the speed of the user, and the user is immediately warned of walking opposite direction or proceeding off the path. The system can acquire stable and reliable directional information using the motion tracker with the dynamic heading accuracy of 1.5 degrees. In order to overcome GPS position error, we proposed a robust trajectory planning algorithm for position error. Experimental results for the developed system show that the average directional angle error is 6.82 degrees (standard deviation: 5.98) in the experimental path, which can be stated that it stably navigated the user relatively.

이 연구는 시각장애인을 위한 길안내 서비스 시스템의 설계와 구현에 관한 연구이다. 시각장애인을 고려한 사용자 인터페이스로써 음성인식을 통한 스마트폰을 입력도구로 사용하였고, 출력도구는 방향 및 음성안내를 하면서도 주변 환경음을 인식할 수 있는 골전도 헤드셋을 사용하였다. 개발된 시스템은 기존의 길안내용 스마트폰 앱과 달리 보행해야할 방향 정보를 착용한 헤드셋의 좌우 스테레오 음의 크기로 전달하며, 갈림길이나 휘어진 길에 대한 음성안내는 수 미터 전에 안내하여 시각장애인의 보행 속도에 적합하게 안내가 이루어지며, 역방향 보행이나 경로이탈을 즉시 경고하는 장점이 있다. 방향센서로 진행방향에 대한 동적 정밀도가 1.5도인 모션 트랙커를 사용하여 안정적이고 신뢰성 있는 방향 정보를 취득할 수 있었다. GPS의 위치오차를 극복하기 위하여 위치오차에 견고한 경로계획 알고리즘을 제안하였다. 구현된 시스템을 실험한 결과 실험 경로에서 평균 방향각 오차가 6.82도(표준 편차 5.98)로 비교적 안정하게 방향을 유도하여 목적지에 도달하였다.

Keywords

References

  1. Electronics and Telecommunications Research Institute, Korea Blind Union, A Study of Requirements for Pedestrian Convenience of Visually impaired, Final report, 2015.
  2. Pablo-Alejandro Quinones et al, "Supporting Visually Impaired Navigation: A Needs-finding Study", CHI 2011, 2011.
  3. Laehyun Kim et al, "Improvement of An Electronic Aid for the Blind using Ultrasonic and Acceleration Sensors", Journal of KISS: Software and Applications, vol. 36, no. 4, pp. 291-297, 2009.
  4. Alberto Rodriguez et. al., "Assisting the Visually Impaired: Obstacle Detection and Warning System by Acoustic Feedback", pp. 17476-17496, 2012.
  5. Dimitrios Dakopoulos and Nikolaos G. Bourbakis, "Wearable Obstacle Avoidance Electronic Travel Aids for Blind: A Survey", IEEE Trans. on Systems, Man and Cybernetics - Part C: Applications and Reviews, vol. 40, no. 1, pp. 25-35, 2010. https://doi.org/10.1109/TSMCC.2009.2021255
  6. Yang Seung Ho, A Study on the Walking Aids' Interface for Independent Indoor Walking of the Visually Impaired, Kookmin University, Phd thesis, 2012.
  7. Dhruv Jain, "Path-Guided Indoor Navigation for the Visually Impaired Using Minimal Building Retrofitting", ASSETS'14, pp. 20-22, 2014.
  8. Aura Ganz et al, "PERCEPT Indoor Navigation System for the Blind and Visually Impaired: Architecture and Experimentation", Int. Jour. of Telemedicine and Applications, vol. 2012, Article ID 894869, p. 12, 2012.
  9. Kyu-Sang Kwon, "Spatial Information and Providing Methods in Mobile Pedestrian Navigation for the Visually Impaired", Jour. of KCA, vol. 13, no. 2, pp. 95-111, 2013.
  10. Bo Huang, Nan Liu, "Mobile Navigation Guide for the Visually Disabled", Transportation Research Record, no. 1885, pp. 28-34, 2004. https://doi.org/10.3141/1885-05
  11. Brian F.G. Katz et al, "NAVIG: Guidance system for the visually impaired using virtual augmented reality", Technology and Disability, vol. 24, pp. 1-16, 2012.
  12. K. Ramarethinam et al, "Navigation System for Blind People Using GPS & GSM Techniques", IJAREEIE, vol. 3, Special Issue 2, pp. 398-405, 2014.
  13. Andrew J. May et al, "Pedestrian navigation aids: information requirements and design implications", Pervasive Ubiquitous Computing, 7: 331-338, 2003. https://doi.org/10.1007/s00779-003-0248-5
  14. Michael Minock et al, "Prediction and Scheduling in Navigation Systems", GeoHCI Workshop at CHI 2013, April 2728, 2013, Paris, France
  15. Zhixiang FANG et al, "What about people in pedestrian navigation?", Geo-spatial Information Science, vol. 18, no. 4, pp. 135-150, 2015. https://doi.org/10.1080/10095020.2015.1126071
  16. Kyoung-ho Kim, Sang-Woong Lee, "Positioning System for the Blind Navigation", Journal of Korean Instutute of Next Generation Computing, vol. 8, no. 4, pp. 6-16, 2012.
  17. Jae-koon Yoo et al, "Development of Localization Tracking System and User Interface og Guiding Robot for the Visually Impaired", Journal of Korea Information Processing Society D, vol. 12, no. 3, pp. 481-491, 2005.
  18. GPS HORIZONTAL POSITION ACCURACY, http://www.leb.esalq.usp.br/disciplinas/Molin/leb447/Arquivos/GNSS/ArtigoAcuraciaGPSsemAutor.pdf
  19. Raubal, M and Winter, S., 2002 Enriching Wayfinding Instructions with Local Landmarks, Lecture Notes in Computer Science, 2478, pp. 243-259.
  20. Get driving, biking, walking and transit navigation in your app, https://mapzen.com/
  21. Open street map, https://www.openstreetmap.org/#map=7/35.948/127.736
  22. A Windows 10 Computer with integrated Arduino, http://www.lattepanda.com/
  23. Xsens 3D motion tracking, https://www.xsens.com/products/mtw-awinda/
  24. Kwang-jin Kim et al, "Dead-Reckning Error Correction Using Orientation Information", 2007 Preceeding of KIIT Summer Conference, pp. 238-243, 2007.

Cited by

  1. 빅데이터 분산처리 시스템을 활용한 지능형 LBS서비스의 설계 vol.19, pp.2, 2017, https://doi.org/10.5392/jkca.2019.19.02.159