• Title/Summary/Keyword: stereo system

Search Result 794, Processing Time 0.03 seconds

Development of a Vision Sensor-based Vehicle Detection System (스테레오 비전센서를 이용한 선행차량 감지 시스템의 개발)

  • Hwang, Jun-Yeon;Hong, Dae-Gun;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.134-140
    • /
    • 2008
  • Preceding vehicle detection is a crucial issue for driver assistance system as well as for autonomous vehicle guidance function and it has to be performed with high reliability to avoid any potential collision. The vision-based preceded vehicle detection systems are regarded promising for this purpose because they require little infrastructure on a highway. However, the feasibility of these systems in passenger car requires accurate and robust sensing performance. In this paper, an preceded vehicle detection system is developed using stereo vision sensors. This system utilizes feature matching, epipoplar constraint and feature aggregation in order to robustly detect the initial corresponding pairs. After the initial detection, the system executes the tracking algorithm for the preceded vehicles including a leading vehicle. Then, the position parameters of the preceded vehicles or leading vehicles can be obtained. The proposed preceded vehicle detection system is implemented on a passenger car and its performances is verified experimentally.

Single Camera 3D-Particle Tracking Velocimetry-Measurements of the Inner Flows of a Water Droplet (단일카메라 3차원 입자영상추적유속계-액적내부 유동측정)

  • Doh, Deog-Hee;Sung, Hyung-Jin;Kim, Dong-Hyuk;Cho, Kyeong-Rae;Pyeon, Yong-Beom;Cho, Yong-Beom
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.1-6
    • /
    • 2006
  • Single-Camera Stereoscopic Vision three-dimensional measurement system has been developed based upon 30-PTV algorithm. The system consists of one camera $(1k\times1k)$ and a host computer. To attain three-dimensional measurements a plate having stereo holes has been installed inside of the lens system. Three-dimensional measurements was successfully attained by adopting the conventional 30-PTV camera calibration methods. As applications of the constructed measurement system, a water droplet mixed with alcohol was constructed on a transparent plastic plate with the contacted fluid diameter 4mm, and the particles motions inside of the droplet have been investigated with the constructed measurement system. The measurement uncertainty of the constructed system was 0.04mm, 0.04mm and 0.09mm for X, Y and Z coordinates.

  • PDF

An Embedding /Extracting Method of Audio Watermark Information for High Quality Stereo Music (고품질 스테레오 음악을 위한 오디오 워터마크 정보 삽입/추출 기술)

  • Bae, Kyungyul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.21-35
    • /
    • 2018
  • Since the introduction of MP3 players, CD recordings have gradually been vanishing, and the music consuming environment of music users is shifting to mobile devices. The introduction of smart devices has increased the utilization of music through music playback, mass storage, and search functions that are integrated into smartphones and tablets. At the time of initial MP3 player supply, the bitrate of the compressed music contents generally was 128 Kbps. However, as increasing of the demand for high quality music, sound quality of 384 Kbps appeared. Recently, music content of FLAC (Free License Audio Codec) format using lossless compression method is becoming popular. The download service of many music sites in Korea has classified by unlimited download with technical protection and limited download without technical protection. Digital Rights Management (DRM) technology is used as a technical protection measure for unlimited download, but it can only be used with authenticated devices that have DRM installed. Even if music purchased by the user, it cannot be used by other devices. On the contrary, in the case of music that is limited in quantity but not technically protected, there is no way to enforce anyone who distributes it, and in the case of high quality music such as FLAC, the loss is greater. In this paper, the author proposes an audio watermarking technology for copyright protection of high quality stereo music. Two kinds of information, "Copyright" and "Copy_free", are generated by using the turbo code. The two watermarks are composed of 9 bytes (72 bits). If turbo code is applied for error correction, the amount of information to be inserted as 222 bits increases. The 222-bit watermark was expanded to 1024 bits to be robust against additional errors and finally used as a watermark to insert into stereo music. Turbo code is a way to recover raw data if the damaged amount is less than 15% even if part of the code is damaged due to attack of watermarked content. It can be extended to 1024 bits or it can find 222 bits from some damaged contents by increasing the probability, the watermark itself has made it more resistant to attack. The proposed algorithm uses quantization in DCT so that watermark can be detected efficiently and SNR can be improved when stereo music is converted into mono. As a result, on average SNR exceeded 40dB, resulting in sound quality improvements of over 10dB over traditional quantization methods. This is a very significant result because it means relatively 10 times improvement in sound quality. In addition, the sample length required for extracting the watermark can be extracted sufficiently if the length is shorter than 1 second, and the watermark can be completely extracted from music samples of less than one second in all of the MP3 compression having a bit rate of 128 Kbps. The conventional quantization method can extract the watermark with a length of only 1/10 compared to the case where the sampling of the 10-second length largely fails to extract the watermark. In this study, since the length of the watermark embedded into music is 72 bits, it provides sufficient capacity to embed necessary information for music. It is enough bits to identify the music distributed all over the world. 272 can identify $4*10^{21}$, so it can be used as an identifier and it can be used for copyright protection of high quality music service. The proposed algorithm can be used not only for high quality audio but also for development of watermarking algorithm in multimedia such as UHD (Ultra High Definition) TV and high-resolution image. In addition, with the development of digital devices, users are demanding high quality music in the music industry, and artificial intelligence assistant is coming along with high quality music and streaming service. The results of this study can be used to protect the rights of copyright holders in these industries.

Single-Camera Micro-Stereo 4D-PTV (단일카메라 마이크로 스테레오 4D-PTV)

  • Doh, Deog-Hee;Cho, Young-Beom;Lee, Jae-Min;Kim, Dong-Hyuk;Jo, Hyo-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1087-1092
    • /
    • 2010
  • A micro 3D-PTV system has been constructed using a single camera system. Two viewing holes were created behind the object lens of the microscopic system to construct a stereoscopic viewing image. A hybrid recursive PTV algorithm was used. A concept of epipolar line was adopted to eliminate many spurious candidates. Three-dimensional velocity vector fields were obtained by calculating the three-dimensional displacements of particles that were identified as being identical. The system consists of a laser light source (Ar-ion, 500 mW), one high-definition camera ($1028{\times}1024$ pixels, 500 fps), a circular plate with two viewing holes, and a host computer. The performance of the developed algorithm was tested using artificial images. The characteristic of the vector recovery ratio was investigated for the particle numbers. A micro backward-facing step channel ($H{\times}h{\times}W:\;36{\mu}m{\times}70{\mu}m{\times}3000{\mu}m$) was measured using the developed measurement system. The results were in good qualitative agreement with other results.

Parcel Boundary Demarcation in Residential Area Using High Resolution Aerial Images (고해상도 항공영상을 이용한 주거지역 필지경계 설정에 관한 연구)

  • Park, Chiyoung;Lee, Jaeone
    • Spatial Information Research
    • /
    • v.23 no.1
    • /
    • pp.59-68
    • /
    • 2015
  • As part of an effort to leap smart cadastre system by doing rearrangement of various mismatches in the land register, the cadastre renovation project is being recently conducted. In response to this demand, this paper proposes an image-based rapid parcel boundary demarcation plan using the high resolution aerial image with a GSD (Ground Sample Distance) of 5cm that matches to real ground boundary situation in residential area. To review the feasibility and accuracy of this proposed methodology, we compared the accuracy of parcel boundary point and parcel area extracted from the digital stereo plotting on the basis of results of cadastral boundary surveying and land register over the selected two test areas. The comparative accuracy result of all boundary points by digital stereo plotting is satisfied with accuracy requirement according to the criteria of the enforcement regulation of cadastral surveying, whereas it exceeded allowable error of ${\pm}0.07m$, more strictly specified in the Special Act on Cadastral Renovation. And about 20% of the total 70 parcels extracted by digital plotting are out of area tolerance in Jecheon study area, and 10% of the total 19 parcels in Suwon study area. The parcels exceeding accuracy limit are mostly due to the occlusion caused by building roof or eaves, and the obstacles such as trees existing on the boundary. Furthermore, an object identification is impossible in image because of vague boundary reference in case of nonexistence of man-made structures or natural features. Therefore, the utilization of boundary identification stickers is recommended as a solution for these types of land parcel.

A Study on the Analysis of the Error in Photometric Stereo Method Caused by the General-purpose Lighting Environment (測光立體視法에서 범용조명원에 기인한 오차 해석에 관한 연구)

  • Kim, Tae-Eun;Chang, Tae-Gyu;Choi, Jong-Soo
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.11
    • /
    • pp.53-62
    • /
    • 1994
  • This paper presents a new approach of analyzing errors resulting from nonideal general-purpose lighting environment when the Photometric Stereo Method (PSM) is applied to estimate the surface-orientation of a three-dimensional object. The approach introduces the explicit modeling of the lighting environment including a circular-disk type irradiance object plane and the direct simulation of the error distribution with the model. The light source is modeled as a point source that has a certain amount of beam angle, and the luminance distribution on the irradiance plane is modeled as a Gaussian function with different deviation values. A simulation algorithm is devised to estimate the light source orientation computing the average luminance intensities obtained from the irradiance object planes positioned in three different orientations. The effect of the nonideal lighting model is directly reflected in such simulation, because of the analogy between the PSM and the proposed algorithm. With an instrumental tool designed to provide arbitrary orientations of the object plane at the origin of the coordinate system, experiment can be performed in a systematic way for the error analysis and compensation. Simulations are performed to find out the error distribution by widely varying the light model and the orientation set of the object plane. The simulation results are compared with those of the experiment performed in the same way as the simulation. It is confirmed from the experiment that a fair amount of errors is due to the erroneous effect of the general-purpose lighting environment.

  • PDF

3D Reconstruction of Pipe-type Underground Facility Based on Stereo Images and Reference Data (스테레오 영상과 기준데이터를 활용한 관로형 지하시설물 3차원 형상 복원)

  • Cheon, Jangwoo;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1515-1526
    • /
    • 2022
  • Image-based 3D reconstruction is to restore the shape and color of real-world objects, and image sensors mounted on mobile platforms are used for positioning and mapping purposes in indoor and outdoor environments. Due to the increase in accidents in underground space, the location accuracy problem of underground spatial information has been raised. Image-based location estimation studies have been conducted with the advantage of being able to determine the 3D location and simultaneously identify internal damage from image data acquired from the inside of pipeline-type underground facilities. In this study, we studied 3D reconstruction based on the images acquired inside the pipe-type underground facility and reference data. An unmanned mobile system equipped with a stereo camera was used to acquire data and image data within a pipe-type underground facility where reference data were placed at the entrance and exit. Using the acquired image and reference data, the pipe-type underground facility is reconstructed to a geo-referenced 3D shape. The accuracy of the 3D reconstruction result was verified by location and length. It was confirmed that the location was determined with an accuracy of 20 to 60 cm and the length was estimated with an accuracy of about 20 cm. Using the image-based 3D reconstruction method, the position and line-shape of the pipe-type underground facility will be effectively updated.

Review of Remote Sensing Technology for Forest Canopy Height Estimation and Suggestions for the Advancement of Korea's Nationwide Canopy Height Map (원격탐사기반 임분고 추정 모델 개발 국내외 현황 고찰 및 제언)

  • Lee, Boknam;Jung, Geonhwi;Ryu, Jiyeon;Kwon, Gyeongwon;Yim, Jong Su;Park, Joowon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.435-449
    • /
    • 2022
  • Forest canopy height is an indispensable vertical structure parameter that can be used for understanding forest biomass and carbon storage as well as for managing a sustainable forest ecosystem. Plot-based field surveys, such as the national forest inventory, have been conducted to provide estimates of the forest canopy height. However, the comprehensive nationwide field monitoring of forest canopy height has been limited by its cost, lack of spatial coverage, and the inaccessibility of some forested areas. These issues can be addressed by remote sensing technology, which has gained popularity as a means to obtain detailed 2- and 3-dimensional measurements of the structure of the canopy at multiple scales. Here, we reviewed both international and domestic studies that have used remote sensing technology approaches to estimate the forest canopy height. We categorized and examined previous approaches as: 1) LiDAR approach, 2) Stereo or SAR image-based point clouds approach, and 3) combination approach of remote sensing data. We also reviewed upscaling approaches of utilizing remote sensing data to generate a continuous map of canopy height across large areas. Finally, we provided suggestions for further advancement of the Korean forest canopy height estimation system through the use of various remote sensing technologies.

A Basic Study of ROV System Design for Underwater Structure Inspection (수중 구조물 검사를 위한 ROV 시스템 설계 연구)

  • Ryu, Jedoo;Nam, Keonseok;Ha, Kyoungnam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.463-471
    • /
    • 2020
  • Recently, various tries to apply ROV (Remotely Operated Vehicle) into underwater are being developed. However, due to underwater environment uniqueness, the additional problem must be taken into account when designing an ROV for the inspection of the underwater structure. This is because a GPS-based information method cannot be applied, and the obtainable image is also dependent on the turbidity. Also, it is necessary to be able to satisfy waterproof and operating speeds in consideration of most practical application environments. This paper describes the design results of the ROV system for underwater structure inspection considering the above problems. The designed system applied INS / DVL for location recognition and was configured to support 3D mapping and stereo camera-based image information using sonar depending on visibility. To satisfy the waterproof, a pressure vessel using a composite material was applied. And over-actuated system using eight thrusters to maintain a stable posture and operating speed was applied also. The designed system was verified by structural analysis and flow analysis also.

INS/Multi-Vision Integrated Navigation System Based on Landmark (다수의 비전 센서와 INS를 활용한 랜드마크 기반의 통합 항법시스템)

  • Kim, Jong-Myeong;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.671-677
    • /
    • 2017
  • A new INS/Vision integrated navigation system by using multi-vision sensors is addressed in this paper. When the total number of landmark measured by the vision sensor is smaller than the allowable number, there is possibility that the navigation filter can diverge. To prevent this problem, multi-vision concept is applied to expend the field of view so that reliable number of landmarks are always guaranteed. In this work, the orientation of camera installed are 0, 120, and -120degree with respect to the body frame to improve the observability. Finally, the proposed technique is verified by using numerical simulation.