• Title/Summary/Keyword: step speed

Search Result 1,438, Processing Time 0.029 seconds

Development of the Speed Limit Model for Harbour and Waterway(II) - The Method of Speed Limit Decision and Application -

  • Kim, Deug-Bong;An, Kwang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.3
    • /
    • pp.274-282
    • /
    • 2015
  • This research is the result on calculating the logical speed limit through certain process which some elements must be considered on selecting the speed limit of harbour and waterway. The suggested speed limit select model on this research is processed from 1~6 steps by forming a professional group of experts. Each step has its information which 1st step(water division), 2nd step(selecting the model vessel and vessel applied with speed limit.), 3rd step(selecting the maximum and minimum speed range on each section), 4th step(evaluation on the safeness of traffic), 5th step(suggesting the appropriate speed limit), 6th step(execution and evaluation.). The appropriate speed limit was decided on consideration of the safety of maritime traffic on the range of the maximum speed and the minimum speed. This model was used to derive the appropriate speed limit on the harbour water and Busan harbour entrance waterway. As the result, the harbour water was calculated to be 6.9 knots, the appropriate speed limit of Busan entrance harbour was 9.3 knots. The present calculation of the speed limit on the approaching channel area is 10 knots, inner harbour area is 7 knots, which are similar to the result of the speed limit. This research is the first research on selecting the speed limit model and has its limits on finding the perfect speed limit result. More detailed standards on the safeness of traffic evaluation must be found and additional study is necessary on discriminating consideration of the elements. This research has its value which it provides instances of aboard cases on guidelines of selecting the speed limit.

Hybrid Pulse Width Modulation Strategy for Wide Speed Range in IPMSM with Low Cost Drives

  • Ahn, Han-woong;Go, Sung-chul;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.670-674
    • /
    • 2016
  • The control performance of hybrid PWM inverter using a phase current measurement is presented in this paper. The hybrid PWM technique consists of space vector pulse width modulation (SVPWM) and six-step voltage control operation. The SVPWM is performed to reduce the harmonic components in the low speed region, and the six-step modulation is applied to increase the maximum speed of the IPMSM in the high speed region. Therefore, it is possible to obtain a great performance in both the low speed range and high speed range. However, the six-step modulation cannot be completely implemented, since the inverter that includes the lag-shunt sensing method has an immeasurable current region. In this paper, a quasi-six-step modulation using a modified voltage vector is proposed. The validity and usefulness of the proposed PWM technique is verified by MATLAB/Simulink and experimental results.

Effects of Unilateral Step Treadmill Training on the Gait Speed and Recovery of Gait Symmetry in Patients with Chronic Stroke (편측성 걸음걸이 트레드밀 훈련이 만성 뇌졸중 환자의 보행 속도와 대칭성 회복에 미치는 효과)

  • Lee, Ji-Yeon;Chon, Seung-Chul
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.4
    • /
    • pp.145-151
    • /
    • 2022
  • Purpose : Stroke patients exhibit abnormal walking patterns such as slow walking speed and asymmetrical walking values. The recovery of symmetrical walking in the stance phase using a treadmill means improvements in walking speed and asymmetrical walking. The purpose of this research was to investigate the effect of unilateral step treadmill training (USTT) on gait speed and the recovery of symmetrical walking in chronic stroke patients. Methods : Fifteen patients (11 men and 4 women) with chronic stroke participated in this study. The 10-meter walk test (10MWT) and GAITRite system were used to determine the intervention-related changes in gait speed and symmetrical walking values such as non-paretic step length (NSL), non-paretic step time (NST), paretic single-support time (PSST), step length asymmetry (SLA), and step time asymmetry (STA) after USTT. All participants completed USTT and underwent measurements at 3 different times: at pretest, posttest, and the follow-up test. Repeated-measures analysis of variance was used to compare walking speed and asymmetrical walking values. The statistical significance level was set at p<.05. Results : Walking speed by 10MWT (p<.05) showed significant improvements after USTT as follows: at pretest and posttest (p<.05), posttest and follow-up test (p<.05), and pretest and follow-up test (p<.05). Recovery of symmetrical walking patterns such as NSL (p<.05), NST (p<.05), and SLA (p<.05) were observed after USTT. However, no significant improvements were found in PSST (p>.05) and STA (p>.05) in symmetrical gait. Conclusion : This study suggests that USTT may have a positive effect on walking speed and symmetrical walking patterns in chronic stroke patients. Thus, this study contributes to the existing knowledge about the usefulness of USTT for the effective management of patients with chronic stroke. Further studies are needed to generalize these findings.

The Influence of Step Length at Different Walking Speed on the Moment of the Lower Limb Joint (보행속도에 따른 보폭변화가 하지관절 모멘트에 미치는 영향)

  • Kim, Ro-Bin;Jin, Young-Wan;Moon, Gon-Sung
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.93-102
    • /
    • 2005
  • The purpose of this study was to examine the effect of step length on the joint moment. The subjects were 4 undergraduate and graduate students in their 20s with normal legs. The subjects were individually tested by the running timer at the walking speed of 0.67m/s, 134m/s, and 2.46m/s. The step length was regulated to -10% of normal, normal and +10% of normal step length using foot print. The walking performances of each subjects were filmed using a high speed video camera. The raw data were analyzed by LabVIEW Graphical Program and these data were analyzed by ANOVAs and Scheffe. The results of this study were as follows: The maximum dorsiflexion moment of the ankle joint increased as the step length increased only at the fast walking speed. Although there wasn't significant difference shown in the plantar flexion moment, regular pattern in the plantar flexion moment which increased as the step length increased was found. The first maximum extension moment of the knee joint increased only at the normal walking speed, but there appeared no significant difference in the maximum flexion and second extension moment. The maximum extension moment of the hip joint increased at the normal and fast walking speed. Although there wasn't significant difference, regular pattern in flexion moment which increased as the step length increased was found.

MPPT Control of Photovoltaic using Variable IC Method (가변 IC 방법을 이용한 태양광 발전의 MPPT 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.27-34
    • /
    • 2012
  • This paper proposes variable incremental conductance(IC) algorithm for maximum power point tracking(MPPT) control of photovoltaic. The conventional perturbation & observation(PO) and IC MPPT control algorithm generally uses fixed step size. A small step size reduces a tracking error in the steady state but slows a tracking speed in the transient state. Also, a large step size is fast a tracking speed but increases a tracking error. Therefore, this paper proposes variable IC MPPT algorithm that adjust automatically step size according to operating conditions. To improve a tracking speed and accuracy, when operating point is far from the maximum power point(MPP), the step size uses maximum value and when a operating point is near from the MPP, the step size uses variable step size that adjust according to slope of P-V curve. The validity of MPPT algorithm proposed in this paper prove through compare with conventional PO and IC MPPT algorithm.

A study ont he state-variable feedback control of a hybrid step motor (하이브리드 스텝모터의 상태변수 궤환제어에 관한 연구)

  • 권순학;김광배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.566-569
    • /
    • 1987
  • The primary difficulties encountered in the use of step motors are underdamped response when stopping at a specified position and dynamic instability during high-speed slewing. This paper proposes a speed and position detection scheme using the back EMF generated by the rotating permanent magnet field of a two-phase 1.8.deg. hybrid step motor, and presents its application to the state-variable feedback control of the hybrid step motor. All simulation results in a single step response show that the hybrid step motor performances such as peak overshoot and settling time are greatly improved.

  • PDF

A Study on Optimization of Block Sectioning for Step Speed Control (II) (다단계 속도제어에 의한 폐색구간 분할에 대한 최적화에 관한 연구 (II))

  • 이종우
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.397-404
    • /
    • 2003
  • In part I, we studied only step speed control for train, the second part extended to beacon signaling system and moving block system. With the calculated braking distance in part I, part II showed how to reduce headway using the beacon signaling system and moving block system, revealed that the beacon system has a braking distance advantage for sighting allowance with compared to step speed control, proposed beacon installation interval and revealed the braking distance with moving block system being nearly approached to train pure braking distance. We compared three different train control system to decide the best signaling system for a given condition and obtained the result that three systems have a same headway near 10~13 steps speed control.

A Study on the Lead Angle Control of Step Motor (스텝 모터의 진상각 제어에 관한 연구)

  • 김영석;박성진
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.84-88
    • /
    • 1991
  • The lead angle control of step motor for high speed drive is represented in this paper. It was designed position and speed information feedback system which was composed of step motor coupled with encoder, z-80, and hardware. The relationships between the lead angle and speed characteristics are established by experiments.

  • PDF

A High-Speed Autonomous Navigation Based on Real Time Traversability for 6×6 Skid Vehicle (실시간 주행성 분석에 기반한 6×6 스키드 차량의 야지 고속 자율주행 방법)

  • Joo, Sang-Hyun;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.251-257
    • /
    • 2012
  • Unmanned ground vehicles have important military, reconnaissance, and materials handling application. Many of these applications require the UGVs to move at high speeds through uneven, natural terrain with various compositions and physical parameters. This paper presents a framework for high speed autonomous navigation based on the integrated real time traversability. Specifically, the proposed system performs real-time dynamic simulation and calculate maximum traversing velocity guaranteeing safe motion over rough terrain. The architecture of autonomous navigation is firstly presented for high-speed autonomous navigation. Then, the integrated real time traversability, which is composed of initial velocity profiling step, dynamic analysis step, road classification step and stable velocity profiling step, is introduced. Experimental results are presented that demonstrate the method for a $6{\times}6$ autonomous vehicle moving on flat terrain with bump.

Speed Control of DC Step Motor using Neural Networks (신경망을 이용한 직류 스텝모터의 속도제어)

  • 손준혁;박성욱;서보혁;이상철
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.4
    • /
    • pp.212-220
    • /
    • 2004
  • The present DC Motor or STEP Motor have been used in electronic work and products. There are many papers that let those Motor improved more conveniently in controlling and measuring those than before. By controlling and measuring those, the convenience of users and the functions of products can be improved. In addition, the responding speed of whole system can be increased by improving it of controlling and measuring. Therefore it is necessary that we develop motor motion application. Because of this necessity, neural networks was used to improve the responding speed of controlling and measuring, and a new application was developed for the convenience of users. This paper showed that efficiency of controlling methodology by neural-network is superior to others in correctness and speed. We are intend to verify its practical usefulness though experimentations.