• Title/Summary/Keyword: steel-fiber concrete

Search Result 1,314, Processing Time 0.027 seconds

Effects of cement dosage and steel fiber ratio on the mechanical properties of reactive powder concrete

  • Erdogdu, Sakir;Kandil, Ufuk;Nayir, Safa
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.139-144
    • /
    • 2019
  • In this study, the mechanical properties of reactive powder concrete (RPC) with a constant cement to silica fume ratio of 4 were investigated. In the experimental program, reactive powder concretes with steel fiber at different ratios were produced. Five productions using quartz sand with a maximum grain size of 0.6 mm were performed. A superplasticizer with a ratio of 3% of the cement was used for all productions. $40{\times}40{\times}160mm$ prismatic specimens were prepared and tested for flexural and compression. The specimens were exposed to two different curing conditions as autoclave and standard curing condition. Autoclave exposure was performed for 3 hours under a pressure of 2 MPa. It was observed that the compressive strength of concrete, along with the flexural strength exposed to autoclave was quite high compared to the strength of concretes subjected to standard curing. The results obtained indicated that the compressive strength, along with the flexural strength of autoclaved concrete increased as the amount of cement used increases. Approximately 15% increase in flexural strength was achieved with a 4% steel fiber addition. The maximum compressive strength that has been reached is over 210 MPa for reactive powder concrete for the same steel fiber ratio and with a cement content of $960kg/m^3$. The relationship between compressive strength and flexural strength of reactive powder concrete exposed to both curing conditions was also identified.

Fatigue Behavior of Steel Fiber Reinforced Concrete Continuous Beams under Cyclic Loading (반복하중하에서 강섬유보강 철근콘크리트 연속보의 피로거동)

  • Kwak, Kae-Hwan;Park, Jong-Gun;Jang, Hwa-Sup
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.6
    • /
    • pp.47-58
    • /
    • 2004
  • As concrete structures are getting larger, higher, longer and more specialized, it is more required to develop steel fiber concrete and apply to the real world. In this research, it is aimed to have fatigue strength examined, varying the steel fiber content of 0%, 0.75%, 1.00%, 1.25% by experimental study of fatigue behavior of the steel fiber reinforced concrete continuous beams under cyclic loading. The ultimate load and initial load of flexural cracking were measured by static test. In addition, the load versus strain relation, load versus deflection relation, crack pattern and fracture mode by increasing weight were observed. On the other hand, the crack propagation and the modes of fracture according to cycle number and the relation of cyclic loading to deflection relation and strain relation were investigated by fatigue test. As the result of fatigue test, continuous beam without steel fiber was failed at 60 ~ 70% of The static ultimate strength and it could be concluded that fatigue strength to two million cyclic loading was arround 67.2% by S-N curve. On the other hand, that with steel fiber was failed at 65 ~ 85% of the static ultimate strength and it could be concluded fatigue strength to two million cyclic loading around 71.7%.

A Study on the Effect of Steel Fiber in Reinforced Concrete Coupling Beam Subjected to Cyclic Loading (반복하중을 받는 철근콘크리트 연결보에서 강섬유의 보강효과에 관한 연구)

  • Kim, Jin-Sung;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.181-190
    • /
    • 2019
  • In this study, four reinforced concrete coupling beams were subjected to cyclic lateral loading test to evaluate the structural performance of coupling beam according to volume fraction of steel fiber. For this purpose, the volume fraction of steel fiber(0%, 1%, 2%) and transverse reinforcement spacing were determined as the main parameter. According to the test results, the maximum strength of D-40C-s100-0 was 1.15, 1.13, 1.05 times higher than D-40C-s300-0, D-40C-s300-1, D-40C-s300-2, respectively. The maximum strength of coupling beams with mitigated rebar details increases as the volume fraction of steel fiber increases. Although steel fiber 2% reinforced specimen(D-40C-s300-2) did not satisfy the amount of transverse reinforcement required for seismic design of coupling beam, the overall performance including to maximum strength, ductility and energy dissipation capacity was similar to the control specimen(D-40C-s100-0). As a result, the use of steel fiber with 2% reinforcement can partially replace the transverse reinforcement in diagonally reinforced concrete coupling beam.

Flexural Toughness and Fatigue Behavior of Steel Fiber Reinforced Rapid-set Cement Concrete (강섬유보강 초속경시멘트 콘크리트의 휨인성 및 피로거동)

  • Lee, Bong-Hak;Hong, Chang-Woo;Kim, Dong-Ho
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.163-172
    • /
    • 1999
  • This study is conducted on the flexural toughness and flexural fatigue test to fine the mechanical properties of steel fiber reinforced rapid-set cement concrete. Experimental investigation is examined according to fiber contents(0, 0.4, 0.7, 1.0, 1.5%), fiber aspect ratio(58, 60, 83), fiber type (hooked, crimped fiber), and cement type (normal portland & rapid-set cement). The principal results obtained through this study are as follows; toughness and fatigue resistance tend to considerably increase with fiber contents, fiber aspect ration. And hooked fiber is improved better than crimped fiber. Concrete using rapid set cement is increased strength properties compared with concrete using normal portland cement, but relative strength properties behavior and fatigue resistance show a tendency to decrease a little.

  • PDF

Flexural Strength of Hybrid Steel Fiber-Reinforced Ultra-High Strength Concrete Beams (하이브리드 강섬유 보강 초고강도 콘크리트 보의 휨강도)

  • Yang, In-Hwan;Kim, Kyoung-Chul;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.283-290
    • /
    • 2015
  • This paper proposes a method for predicting flexural strength of hybrid steel fiber-reinforced ultra-high strength concrete beams. It includes an experimental test framework and associated numerical analyses. The experimental program includes flexural test results of hybrid steel fiber-reinforced ultra-high strength concrete beams with steel fiber content of 1.5% by volume. Tensile softening characteristics play an important role in the structural behavior of steel fiber-reinforced ultra high performance concrete. Tension softening modeling is carried out by using crack equation based on fictitious crack and inverse analysis in which load-crack mouth opening displacement relationship is considered. The comparison of moment-curvature curves of the numerical analysis results with the test results shows a reasonable agreement. Therefore, the numerical results confirms that good prediction of flexural behavior of steel fiber-reinforced ultra high strength concrete beams can be achieved by employing the proposed method.

An Experimental Study on the Flexural Fatigue Behavior of SFRC (강섬유보강 콘크리트의 휨피로 거동에 관한 실험적 연구)

  • 최의규;이봉학;윤영구;이주형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.62-65
    • /
    • 2000
  • Potentially significant engineering advantages can be gained by the incorporation of steel fibers in tension-weak concrete. A variety of tests have been developed to measure and quantify the improvements achievable in steel fiber reinforced concrete. An objective of the study is to experimentally investigate the flexural fatigue behavior of steel-reinforced concrete with a experimental variables such as steel fiber types. To predict the behavior of steel reinforced structural componets under fatigue conditions.

  • PDF

Rheology Property of Steel Fiber Reinforced High Performance Concrete (강섬유 보강 고성능 콘크리트의 유동 특성)

  • Kim, Young-Ik;Sung, Chan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.205-208
    • /
    • 2002
  • This study is performed to examine the flowability and filling ability of steel fiber reinforced high performance concrete. For the estimation of the flowability and filling ability, slump flow, box height difference and L-shape filling appearence are measured and compared. The test result shows that the slump flow is $60{\pm}5cm$ to make no difference with containing steel fiber, box height difference is increased with increasing steel fiber and L-shape filling appearence is to bad with increasing steel fiber. But, proper containg of steel fiber is considered to be applied for high performance concrete without decreasing of slump flow and filling ability.

  • PDF

The Overall Investigation of Steel Fiber Strengthening Factor in Shear (전단에 대한 강섬유 보강계수의 종합적 고찰)

  • Lee, Hyun-Ho;Kwon, Yeong-Ho;Lee, Hwa-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.251-254
    • /
    • 2005
  • This study will have to define the shear strengthening effects of steel fiber in beam and column levels, as well as to suggest estimation method of maximum shear capacity of structural members. From review of literature surveys and perform structural member test results, following conclusion can be made; In beam level, steel fiber strengthening factor is suggested from the tensile splitting test results and beam test results. After suggesting shear capacity of beam without stirrups and beam with stirrups by proposed steel fiber strengthening factor, proposed equation is possible to evaluate the shear capacity of beam. In column level, with column test results and proposed steel fiber strengthening factor, shear capacity equation of steel fiber reinforced concrete in column is suggested.

  • PDF

Evaluation of Flexural Performance of Steel Fiber Reinforced Concrete Beams (강섬유보강 철근콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Shin, Jong-Hack;Ju, Jung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.139-145
    • /
    • 2000
  • In this experimental program specimens. designed by the test variables, such as percentage of steel fiber incorporated, were constructed and tested to evaluate the flexural performance of reinforced steel fiber concrete beams. Based on the test results reported in this study, the following conclusions are made. Comparing with the load-displacement relationship of standard specimen, specimen over 0.5% of steel fiber incorporated, could be improved significantly flexural performance, such as capacity, ductility, and crack pattern. As increasing in quantity of steel fiber incorporated(0.5%~2.0%), the flexural strength of each specimen was shown the enhancement of 13%~40% in comparision with the standard specimen BSS.

  • PDF

Tensile and Compressive Creep Behaviors of Amorphous Steel Fiber-Reinforced Concrete

  • Truong, Gia Toai;Choi, Kyoung-Kyu;Choi, Oan-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.197-203
    • /
    • 2013
  • In this study, the creep behaviors of amorphous steel fiber-reinforced concrete were investigated. Two different types of tests were carried out to evaluate the effect of amorphous steel fibers on the creep of concrete: compressive creep test and tensile creep test. Fiber volume fractions used in the test were 0.2% and 0.4% for tensile specimens, and 0.2% and 0.3% for compressive specimens. Based on the test results, the addition of fiber volume fraction of 0.2% into concrete could significantly reduce both compressive and tensile creep.