• Title/Summary/Keyword: steel tower

Search Result 224, Processing Time 0.025 seconds

Ultimate Axial Strength of Longitudinally Stiffened Cylindrical Steel Shell for Wind Turbine Tower (풍력발전 타워용 종방향 보강 원형단면 강재 쉘의 극한압축강도)

  • Ahn, Joon Tae;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.123-134
    • /
    • 2017
  • Ultimate axial strength of longitudinally stiffened cylindrical steel shells for wind turbine tower was investigated by applying the geometrically and materially nonlinear finite element method. The effects of radius to thickness ratio of shell, shape and amplitude of initial imperfections, area ratio between effective shell and stiffener, and stiffener spacing on the ultimate axial strength of cylindrical shells were analyzed. The ultimate axial strengths of stiffened cylindrical shells by FEA were compared with design buckling strengths specified in DNV-RP-C202. The shell buckling modes obtained from a linear elastic bifurcation FE analysis as well as the weld depression during fabrication specified in Eurocode 3 were introduced in the nonlinear FE analysis as initial geometric imperfections. The radius to thickness ratio of cylindrical shell models was selected to be in the range of 50 to 200. The longitudinal stiffeners were designed according to DNV-RP-C202 to prevent the lateral torsional buckling and local buckling of stiffeners.

Determination of an Optimum Initial Cable Tension Force for Cable-Stayed Bridges using the Least Square Method (최소자승법을 이용한 사장교의 적정 케이블 장력 결정)

  • Park, Yong Myung;Cho, Hyun Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.727-736
    • /
    • 2005
  • This study presents a method of determining the optimum cable tension forces for the proper initial equilibrium state of a cable-stayed bridge using the least square method. The proposed method minimizes the errors, i.e., the differences, such as the deflection and the moments of the girder and the tower, between the target values from a continuous beam by considering the cable anchor point as supports of the girder and the responses obtained from the analysis of the entire cable-stayed bridge system. Especially, the proposed method can selectively control the adjustment of the tower moment, the girder moment, and the deflections by introducing the weighing matrix. Through numerical analysis and comparisons with existing studies, the usefulness and validity of the proposed method was verified.

The Structural Design of Tianjin Goldin Finance 117 Tower

  • Liu, Peng;Ho, Goman;Lee, Alexis;Yin, Chao;Lee, Kevin;Liu, Guang-lei;Huang, Xiao-yun
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.4
    • /
    • pp.271-281
    • /
    • 2012
  • Tianjin Goldin Finance 117 tower has an architectural height of 597 m, total of 117 stories, and the coronation of having the highest structural roof of all the buildings under construction in China. Structural height-width ratio is approximately 9.5, exceeding the existing regulation code significantly. In order to satisfy earthquake and wind-resisting requirements, a structure consisting of a perimeter frame composed of mega composite columns, mega braces and transfer trusses and reinforced concrete core containing composite steel plate wall is adopted. Complemented by some of the new requirements from the latest Chinese building seismic design codes, design of the super high-rise building in high-intensity seismic area exhibits a number of new features and solutions to professional requirements in response spectrum selection, overall stiffness control, material and component type selection, seismic performance based design, mega-column design, anti-collapse and stability analysis as well as elastic-plastic time-history analysis. Furthermore, under the prerequisite of economic viability and a series of technical requirements prescribed by the expert review panel for high-rise buildings exceeding code limits, the design manages to overcome various structural challenges and realizes the intentions of the architect and the client.

Numerical study of stress states near construction joint in two-plate-girder bridge with cast-in-place PC slab

  • Yamaguchi, Eiki;Fukushi, Fumio;Hirayama, Naoki;Kubo, Takemi;Kubo, Yoshinobu
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.173-184
    • /
    • 2005
  • For reducing construction cost, two-plate-girder bridges are getting popular in Japan. This type of bridge employs a PC slab, which is often cast-in-place. In such a case, concrete is not usually cast over the whole slab at one time: some portions are constructed earlier than the rest. Therefore, a construction joint is inevitably created. Due to the drying shrinkage of concrete, tension stress may occur in concrete slab. High tensile stress can be expected near the construction joint where concretes with different ages meet. Moreover, prestressing is not applied over the whole length of slab at one time. This may also serve as a source of tensile stress in the slab. Thus there is a chance that cast-in-place PC slab, especially near the construction joint, may be subjected to tensile cracking. In the present study, stress states near the construction joint in the cast-in-place PC slab of a two-plate-girder bridge are investigated numerically. The finite element method is employed and the three-dimensional analysis is conducted to see the influence of dry shrinkage and prestressing. The stress states in the PC slab thus obtained are discussed. The simplified model of a plate girder for this class of analysis is also proposed.

Static and dynamic analysis of guyed steel lattice towers

  • Meshmesha, Hussam M.;Kennedy, John B.;Sennah, Khaled;Moradi, Saber
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.567-577
    • /
    • 2019
  • Guyed steel lattice towers (or guyed masts) are widely used for supporting antennas for telecommunications and broadcasting. This paper presents a numerical study on the static and dynamic response of guyed towers. Three-dimensional nonlinear finite-element models are used to simulate the response. Through performing static pushover analyses and free-vibration (modal) analyses, the effect of different bracing configurations is investigated. In addition, seismic analyses are performed on towers of different heights to study the influence of earthquake excitation time-lag (or the earthquake travel distance between tower anchors) and antenna weight on the seismic response of guyed towers. The results show that the inclusion of time lag in the seismic analysis of guyed towers can influence shear and moment distribution along the height of the mast. Moreover, it is found that the lateral response is insensitive to bracing configurations. The results also show that, depending on the mast height, an increased antenna weight can reduce the tower maximum base shear while other response quantities, such as cables tension force are found to be insensitive to variation in the antenna weight.

Performance Evaluation of Junctions between Multi-Tubular and Cylindrical Sections for Steel Wind Tower (멀티기둥-강관 풍력타워 연결부 성능 평가)

  • Kim, Jongmin;Park, Hyun-Yong;Kim, Kyungsik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1764-1769
    • /
    • 2014
  • Numerical investigations have been conducted on the junction that connect the multi-tubular section and the single shell section in order to evaluate applicability of hybrid sections in wind turbine towers instead of conventional single shell towers. Major characteristics in structural details include extension of multi-tubular member into shell end section, installation of wing stiffeners, and different layout of floor beams. Elastic and nonlinear incremental analyses were conducted to examine stress concentration patterns and ultimate behaviors, respectively. Based on evaluation of structural performance due to vertical and horizontal forces, it has been confirmed that installation of floor beams and wing stiffeners sensitively affect ultimate strength of global wind tower.

A comparison of structural performance enhancement of horizontally and vertically stiffened tubular steel wind turbine towers

  • Hu, Yu;Yang, Jian;Baniotopoulos, Charalambos C.;Wang, Feiliang
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.487-500
    • /
    • 2020
  • Stiffeners can be utilised to enhance the strength of thin-walled wind turbine towers in engineering practise, thus, structural performance of wind turbine towers by means of different stiffening schemes should be compared to explore the optimal structural enhancement method. In this paper two alternative stiffening methods, employing horizontal or vertical stiffeners, for steel tubular wind turbine towers have been studied. In particular, two groups of three wind turbine towers of 50m, 150m and 250m in height, stiffened by horizontal rings and vertical strips respectively, were analysed by using FEM software of ABAQUS. For each height level tower, the mass of the stiffening rings is equal to that of vertical stiffeners each other. The maximum von Mises stresses and horizontal sways of these towers with vertical stiffeners is compared with the corresponding ring-stiffened towers. A linear buckling analysis is conducted to study the buckling modes and critical buckling loads of the three height levels of tower. The buckling modes and eigenvalues of the 50m, 150m and 250m vertically stiffened towers were also compared with those of the horizontally stiffened towers. The numbers and central angles of the vertical stiffeners are considered as design variables to study the effect of vertical stiffeners on the structural performance of wind turbine towers. Following an extensive parametric study, these strengthening techniques were compared with each other and it is obtained that the use of vertical stiffeners is a more efficient approach to enhance the stability and strength of intermediate and high towers than the use of horizontal rings.

- Analysis of Likelihood of Failure for the External Corrosion of Stainless Steel through the Quantitative Risk Based Inspection Using API-581 - (API-581에 의한 정량적 위험기반검사에서 스테인리스강의 외부부식에 의한 사고발생 가능성 해석)

  • Lee Hern Chang;Kim Hwan Joo;Kim Tae Ok
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.3
    • /
    • pp.99-107
    • /
    • 2004
  • Likelihood of failure (LOF) for the external corrosion of stainless steel, which affect to a risk of facilities, was analyzed quantitatively through the risk based inspection using API-581 BRD. We found that the technical module subfactor (TMSF) decreased as the inspection number increased and it increased as the inspection effectiveness and the used year increased, and that the TMSF showed high value for the case of the marine/cooling tower drift area as a corrosion driver, In this condition, the LOF for the external corrosion of stainless steel had lower than that for the carbon and low alloy steels

Equivalent Suspension Bridge Model for Tower Design of Multi-span Suspension Bridges (다경간 현수교 주탑 설계를 위한 등가 현수교 모델)

  • Choi, Dong-Ho;Na, Ho-Sung;Yi, Ji-Yop;Gwon, Sun-Gil
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.669-677
    • /
    • 2011
  • The multi-span suspension bridge generally has more than three towers and two main spans. To economically and effectively design a multi-span suspension bridge, the proper stiffness ratio of the center tower to the side tower must be determined. This study was conducted to propose a method of figuring out briefly the structural behavior of the towers in a multi-span suspension bridge. In the equivalent suspension bridge model, the main cable of the multi-span suspension bridge is idealized as an equivalent cable spring, and the external loads of horizontal and vertical forces that were calculated using the tensile forces of the main cable were applied on top of the towers. The equilibrium equations of the equivalent multi-span suspension bridge model were derived and the equations were solved via nonlinear analysis. To verify the proposed method, a sample four-span suspension bridge with a main span length of 3,000 m was analyzed using thefinite element method. The displacements and moment reactions of each tower in the proposed method were compared with the FEM analysis results. Consequently, the results of the analysis of the equivalent suspension bridge model tended to be consistent with the results of the FEM analysis.

Bond Strength between Concrete and Steel and Shear Behavior of Shear Connectors of H-shaped Steel Encased Composite Columns (H형강 매입형 합성기둥의 부착강도 및 전단연결재의 전단거동)

  • Wang, Ning;Lee, Hye Lim;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.377-387
    • /
    • 2017
  • The objective of this study is to investigate the influence that how does contact surface between concrete and steel influence the steel encased composite column by push-out test. Also nominal bond stress indicated by design standard such as Eurocode 4 is underestimated in small scale steel encased composite column. The other objective of this study is to investigate how does the number and space of shear connector influence the H-shaped steel encased composite column. The shear behavior of shear connectors is investigated by push-out test.