DOI QR코드

DOI QR Code

Ultimate Axial Strength of Longitudinally Stiffened Cylindrical Steel Shell for Wind Turbine Tower

풍력발전 타워용 종방향 보강 원형단면 강재 쉘의 극한압축강도

  • 안준태 (명지대학교, 토목환경공학과) ;
  • 신동구 (명지대학교, 토목환경공학과)
  • Received : 2016.06.28
  • Accepted : 2016.11.07
  • Published : 2017.04.27

Abstract

Ultimate axial strength of longitudinally stiffened cylindrical steel shells for wind turbine tower was investigated by applying the geometrically and materially nonlinear finite element method. The effects of radius to thickness ratio of shell, shape and amplitude of initial imperfections, area ratio between effective shell and stiffener, and stiffener spacing on the ultimate axial strength of cylindrical shells were analyzed. The ultimate axial strengths of stiffened cylindrical shells by FEA were compared with design buckling strengths specified in DNV-RP-C202. The shell buckling modes obtained from a linear elastic bifurcation FE analysis as well as the weld depression during fabrication specified in Eurocode 3 were introduced in the nonlinear FE analysis as initial geometric imperfections. The radius to thickness ratio of cylindrical shell models was selected to be in the range of 50 to 200. The longitudinal stiffeners were designed according to DNV-RP-C202 to prevent the lateral torsional buckling and local buckling of stiffeners.

풍력발전 타워용 종방향 보강 원형단면 강재 쉘에 대하여 재료 및 기하학적 비선형 유한요소법(GMNIA)으로 극한압축강도 해석을 수행하였다. 보강 쉘의 반경 대 두께비, 초기변형 형상 및 진폭, 종방향보강재의 면적 및 간격 등의 주요 설계 파라미터가 압축력을 받는 보강 쉘의 극한강도에 미치는 영향을 분석하였으며, DNV 설계기준에 의한 설계좌굴강도와 유한요소해석으로 구한 극한압축강도를 비교하였다. 기하학적 초기결함의 형상은 선형 좌굴해석으로부터 구한 좌굴모드 및 제작 과정에서 용접으로 발생하는 딤플 변형을 고려하였다. 해석 대상 보강 쉘의 반경 대 두께비는 50~200이며, 종방향보강재는 횡비틀림좌굴과 국부좌굴이 발생하지 않도록 DNV 설계기준에 따라 두께와 돌출폭을 결정하였다.

Keywords

References

  1. Singer, J. (1976) Buckling, vibrations and postbuckling of stiffened metal cylindrical shells, Proceedings of BOSS 1976, Norwegian Institute of Technology, Trondheim, Norway, pp.765-786.
  2. Dowling, P.J. and Harding, J.E. (1982) Experimental Behaviour of Ring and Stringer Stiffened Shells, In Buckling of Shells in Offshore Structures, Granada, London, pp.73-107.
  3. Croll, J.G.A. (1985) Stiffened Cylindrical Shells Under Axial and Pressure Loading, In Shell Structures-Stability and Strength, Elsevier Applied Science Publishers, London, pp.19-56.
  4. Brush, D.O. (1968) Imperfection Sensitivity of Stringer Stiffened Cylinders, AIAA Journal, Vol.6, No.12, pp.2445-2447. https://doi.org/10.2514/3.5018
  5. Hutchinson, J.W. and Frauenthal, J.C. (1969) Elastic Postbuckling Behavior of Stiffened and Barreled Cylindrical Shells, Journal of Applied Mechanics, Series E, Vol.36, No.4, pp.784-790. https://doi.org/10.1115/1.3564771
  6. Calladine, C.R. (1995) Understanding Imperfection Sensitivity in the Buckling of Thin-walled Shells, Thin-Walled Structures, Vol.23, No.1-4, pp.215-235. https://doi.org/10.1016/0263-8231(95)00013-4
  7. Arbocz, J. and Hol, J.M.A.M. (1995) Collapse of Axially Compressed Cylindrical Shells with Random Imperfections, Thin-Walled Structures, Vol.23, No.1-4, pp.131-158. https://doi.org/10.1016/0263-8231(95)00009-3
  8. Singer, J., Arbocz, J. and Weller, T. (1997, 2001) Buckling Experiments-Experimental Methods in Buckling of Thin-Walled Structures (two volumes), John Wiley & Sons, Chichester and New York.
  9. Teng, J.G. and Rotter, J.M. (2004) Buckling of Thin Metal Shells, Spon Press, London.
  10. AISI (2007) Specification for Structural Steel Buildings, American Institute of Steel Construction.
  11. ECCS (1988) Buckling of Steel Shells: European Recommendations, 4th edn, European Convention for Constructional Steelwork, Brussels.
  12. DIN 18800 (1990) Stahlbauten: Stabilitatsfalle, Schalenbeulen, DIN 18800 Part 4, Deutsches Institut fur Normung, Berlin.
  13. ENV 1993-1-6 (1999) Eurocode 3: Design of Steel Structures, Part 1.6: General Rules-Supplementary Rules for the Strength and Stability of Shell Structures, CEN, Brussels.
  14. API (1989) API Recommended Practice for the Planning, Design, and Construction of Fixed Offshore Platforms, RP2A, 18th ed., American Petroleum Institute, Division of Production, Washington, DC.
  15. DNV (2013) Buckling Strength of Shells, DNV-RP-C202.
  16. ABAQUS (2010) ABAQUS/CAE User's Manual, ver.6.10.

Cited by

  1. Resisting Strength of Ring-Stiffened Cylindrical Steel Shell under Uniform External Pressure vol.30, pp.1, 2018, https://doi.org/10.7781/kjoss.2018.30.1.025