• Title/Summary/Keyword: steel retaining wall

Search Result 58, Processing Time 0.019 seconds

New horizon of earth reinforcement technique - current and future -

  • Otani, Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.514-527
    • /
    • 2007
  • Earth reinforcement techniques are used worldwide and offer proven solutions to a wide range of geotechnical engineering problems. Here in this paper, recent developments of three major reinforced soil retaining wall methods in Japan were introduced in order to show how the current situation of this technique in Japan is. And the statistical data for the volume of the use was also shown, such as the total volume of the use, the scales of the structures, layout of the earth reinforcement, fill materials, and foundation conditions. Some of the case histories were also introduced with photographs and figures. And then, as one of recent research activity by the author, the study on the application of X-ray CT for the problem of earth reinforcement method combined with other method such as piling and soil improvement was introduced. In this study, a series of model test for several reinforced ground with geogrids was conducted using a newly developed test apparatus. Then, the behavior in the soil box was scanned after settlement using X-ray CT scanner. Based on these test results, the reinforcing effect by the geogrids and the soil arching effect over the pile heads was discussed precisely and those are done in 3-D with nondestructive condition. Finally, the effectiveness of the use of X-ray CT scanner in geotechnical engineering was promised.

  • PDF

A Study on the Design Concepts and Main Construction Processes of the Coal Shed at Thermal Power Plant (화력발전소 석탄저장고 설계개념과 시공과정 상의 주요 공정에 관한 연구)

  • Kim, Si-Hyun;Choi, Jang-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3619-3626
    • /
    • 2015
  • The coal shed at thermal power plant(T.P.P) is the biggest building on size among nuclear, coal and other power plant industry buildings. This the coal shed of indoor type is mass volume, the size of 6 soccer fields and 73 meter in height. Structural and functional elements take priority over aesthetic factors. The shed is built to make mighty space for structural safety and functional store by using the concrete, $75,000m^3$ on the total of central retaining wall and sub buttress, and the steel frame used by 11,744-ton P.E.B. system. The design requirement on its wall and frame, P.E.B. system's feature, and specific data of main process followed by construction are inquired. The aim of this study is to suggest the design requirement and guide for the indoor type of the coal shed.

Development and Uncertainty Assessment of Interface Friction Prediction Equation Between Steel Surface and Cohesionless Soils (강재면과 사질토 사이의 경계면 마찰각 예측식 개발 및 불확실성 평가)

  • Lee, Kicheol;Kim, So-Yeun;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.2
    • /
    • pp.33-40
    • /
    • 2018
  • Characteristics of interface friction between cohesionless soils and geotechnical structure surfaces play an important role in the analysis of earth load and resistance on the structure. In general, geotechnical structures are mainly composed of either steel or concrete, and their surface roughnesses with respect to soil particle sizes influence the interface characteristics between soils and the structures. Accurate assessment of the interface friction characteristics between soils and structures is important to ensure the safety of geotechnical structures, such as mechanically stabilized earth walls reinforced with inextensible reinforcements, piles embedded into soils, retaining wall backfilled with soils. In this study, based on the database of high quality interface friction tests between frictional soils and solid surfaces from literature, equation representing peak interface friction angle is proposed. The influential factors of the peak interface friction angle are relative roughness between soil and solid surface, relative density of frictional soil, and residual (constant volume) interface friction angle. Futhermore, for the developed equation of the interface friction angle, its uncertainty was assessed statistically based on Goodness-of-fit test results.

The Structural Characteristics of the Temporary Cofferdam in Accordance with the Shape and Size Obtained from Numerical Analysis (유한요소 해석을 통한 형상 및 크기에 따른 가물막이 특성 검토)

  • Kim, Hyun-Joo;Choi, Jin-O;Gwon, Yun-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.1
    • /
    • pp.29-38
    • /
    • 2020
  • These days the circular cross section cofferdam has been frequently used for the earth retaining structures or cut off wall such as ventilating opening, intake tower in cofferdam, shaft for emergency. By the arching effect, the circular cross section type cofferdam has more advantage than a polygon cofferdam in terms of the structural forces and moment. This paper shows the proper approach to analyze the circular cross section cofferdam using 2D Finite Element Method (FEM) for the circular stiffener (ring beam) evaluation. Besides, the various shapes of cofferdam indluding circular cross section have modeled the 3D Finite Element Mothod (FEM). The circular cross section cofferdam shows the minimum reaction force compared with the other shapes of cofferdam.

A Case Study on Stability Evaluation of Road Slope based on Geological Condition (지질조건에 따른 도로사면 안정검토에 대한 사례연구)

  • Park, Chal-Sook;Kim, Jae-Hong
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.577-587
    • /
    • 2007
  • The length of study area was about 450m, and it was shown the geological condition of distinguished change of rock by cutting slope. In order to establish a slope stability, we carried out an engineering geological investigations about rock constituent, rock structure and a direction of discontinuous plane. The study area was divided into six section considered by direction of cutting slope, height of slope and geological condition. Analysis of cutting slope stability was carried out with stereo-graphic projection method by DIPS program which was feasible of stability analysis with geometrical correlation for a direction of discontinuous plane and direction of cutting slope. From analysis of cutting slope stability considered by construction, stability and economical efficiency, the slope stability countermeasures such as a high tensile wire net, slope protection method and enhanced retaining wall were established and operated which minimized effect caused by lower end of road on a relaxation of huge rock.

Axial Stress Evaluation of Bundle Nails in Smart Construction (스마트 건설기반 번들네일의 축응력 평가)

  • Donghyuk Lee;Jaekoo Ryu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.6
    • /
    • pp.13-17
    • /
    • 2024
  • The general soil nailing method, which is currently used domestically and internationally to stabilize the slopes of sandy slopes, is to form a kind of gravity-type retaining wall by drilling the ground and grouting it with a single steel bar. This method can reduce construction costs, ease of construction, relative strength and displacement, and is highly efficient. The difference between grouting and rebar adhesion to the yield pullout force and the difference between the amount of deformation in relation to the same pullout resistance was analyzed through field tests to identify engineering excellence, and in terms of construction cost, the reduction effect was evaluated by analyzing the difference in the number of drillings and the impact on the overall construction cost, such as material cost, when the same strength constant is applied to the ground with the same resistance.

Analysis on Change of Construction Type for the Non-national Forest Road in Jeollabuk-do (전라북도 민유임도의 시기별 공종변화에 관한 연구)

  • Son, Jae-Ho;Park, Chong-Min;Lee, Joon-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.6
    • /
    • pp.652-660
    • /
    • 2007
  • The study was intended to investigate the changes of construction types of 216 non-national forest roads, which were completed between 1989 and 2005 in Jeollabuk-do, by analyzing their drawing and specification. It was found that the mean length of yearly construction has been significantly reduced after the Policy of Green Forest Roads compared with before the policy. Soil cut-off of earth work was changed from bulldozer to a combination of bulldozer and excavator. Soils were transported by truck in all design, but establishment of spoil-bank was not designed at all. The design of slope revegetation works was developed from turfing and Bastard indigo planting to seed spray, combination of seed spray and belt-sodding, and mulching with coir net and rice straw. In design of the culvert, the average interval of culvert installation was reduced to 92m in step 3, the dimension of culverts was expanded to over 600 mm after step 2, and all drainpipes were corrugated steel pipes. The design length of concrete pavement increased from 40 m/km of step 1 to 240 m/km of step 3. Thanks to the enormously increased amount of concrete pavement, the stability and functionality of forest roads could be improved. Stone masonry was the main work drawn for slope stability, and concrete retaining wall and gabion have been drawn for same object since 1999.

Load Transfer Characteristics of the 7-wire strand using FBG Sensor Embedded Smart Tendon (FBG센서가 내장된 스마트 텐던을 이용한 7연 강연선의 인발 하중전이 특성)

  • Kim, Young-Sang;Suh, Dong-Nam;Kim, Jae-Min;Sung, Hyun-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.79-86
    • /
    • 2009
  • With the substantial increase of the size of structure, the management of excavation becomes more difficult. Therefore, massive collapses which are related to retaining wall recently increase. However, since the study on measuring and monitoring the pre-stressing force of anchor is insufficient, behavior of anchor may not be predicted and monitored appropriately by the existing strain gauge and load cell type monitoring system. FBG Sensor, which is smaller than strain gauge and has better durability and does not have a noise from electromagnetic waves, is adapted to measure the strain and pre-stressing force of 7-wire strand, so called smart tendon. A series of pullout tests were performed to verify the feasibility of smart tendon and find out the load transfer mechanism around the steel wire tendon fixed to rock with grout. Distribution of measured strains and estimated shear stresses are compared with those predicted by theoretical solutions. It was found that developed smart tendon can be used effectively for measuring strain of 7-wire strand anchor and theoretical solutions underestimate the magnitude of shear stress and load transfer depth.