• Title/Summary/Keyword: steel model

Search Result 4,477, Processing Time 0.029 seconds

Vibration analysis and FE model updating of lightweight steel floors in full-scale prefabricated building

  • Petrovic-Kotur, Smiljana P.;Pavic, Aleksandar P.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.277-300
    • /
    • 2016
  • Cold-formed steel (CFS) sections are becoming an increasingly popular solution for constructing floors in residential, healthcare and education buildings. Their reduced weight, however, makes them prone to excessive vibrations, increasing the need for accurate prediction of CFS floor modal properties. By combining experimental modal analysis of a full-scale CFS framed building and its floors and their numerical finite element (FE) modelling this paper demonstrates that the existing methods (based on the best engineering judgement) for predicting CFS floor modal properties are unreliable. They can yield over 40% difference between the predicted and measured natural frequencies for important modes of vibration. This is because the methods were adopted from other floor types (e.g., timber or standard steel-concrete composite floors) and do not take into account specific features of CFS floors. Using the adjusted and then updated FE model, featuring semi-rigid connections led to markedly improved results. The first four measured and calculated CFS floor natural frequencies matched exactly and all relevant modal assurance criterion (MAC) values were above 90%. The introduction of flexible supports and more realistic modelling of the floor boundary conditions, as well as non-structural $fa{\c{c}}ade$ walls, proved to be crucial in the development of the new more successful modelling strategy. The process used to develop 10 identified and experimentally verified FE modelling parameters is based on published information and parameter adjustment resulting from FE model updating. This can be utilised for future design of similar lightweight steel floors in prefabricated buildings when checking their vibration serviceability, likely to be their governing design criterion.

Numerical comparison of the seismic performance of steel rings in off-centre bracing system and diagonal bracing system

  • Bazzaz, Mohammad;Andalib, Zahra;Kheyroddin, Ali;Kafi, Mohammad Ali
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.917-937
    • /
    • 2015
  • During a seismic event, a considerable amount of energy is input into a structure. The law of energy conservation imposes the restriction that energy must either be absorbed or dissipated by the structure. Recent earthquakes have shown that the use of concentric bracing system with their low ductility and low energy dissipation capacity, causes permanent damage to structures during intense earthquakes. Hence, engineers are looking at bracing system with higher ductility, such as chevron and eccentric braces. However, braced frame would not be easily repaired if serious damage has occured during a strong earthquake. In order to solve this problem, a new bracing system an off-centre bracing system with higher ductility and higher energy dissipation capacity, is considered. In this paper, some numerical studies have been performed using ANSYS software on a frame with off-centre bracing system with optimum eccentricity and circular element created, called OBS_C_O model. In addition, other steel frame with diagonal bracing system and the same circular element is created, called DBS_C model. Furthermore, linear and nonlinear behavior of these steel frames are compared in order to introduce a new way of optimum performance for these dissipating elements. The obtained results revealed that using a ductile element or circular dissipater for increasing the ductility of off-centre bracing system and centric bracing system is useful. Finally, higher ductility and more energy dissipation led to more appropriate behavior in the OBS_C_O model compared to DBS_C model.

Nonlinear Earthquake Analysis of a Steel Girder Bridge using Point Hinge Models (힌지모델을 이용한 강 거더 교량의 비선형 지진해석)

  • Lee, Do Hyung;Kim, Yong Il;Lee, Doo Ho;Jeon, Jeong Moon
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.403-411
    • /
    • 2009
  • In the present study, nonlinear earthquake analysis was carried out for a steel girder bridge that had been damaged by the 1995 Kobe earthquake. For such analysis, the use of hysteretic models describing flexure-axial and shear-axial interaction was suggested. The models were incorporated into a structural analysis program in terms of the joint elements representing hinge models, and then a simplified analysis scheme using the hinge models was employed for bridge piers. The analytical predictions of the flexure-axial interactive hinge model show a good correlation with those of the detailed fiber element model. In addition, the analytical predictions of the flexure-shear-axial interactive hinge model enable a displacement component to be separately captured. It is thus recognized that the present study can be a useful scheme for the healthy evaluation of the global displacement performance of piers subjected to earthquake excitation.

Development of Artificial Intelligence Modeling System for Automated Application of Steel Margin in Early Modeling Process using AVEVA Marine (AVEVA Marine 강재마진의 선모델링 자동반영을 위한 인공지능 모델링 시스템 개발)

  • Kim, Nam-Hoon;Park, Yong-Suk;Kim, Jeong-Ho;Kim, Yeon-Yong;Chun, Jong-Jin;Choi, Hyung-Soon
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.35-41
    • /
    • 2013
  • Nowadays, automated modeling system for steel margin based on interactive user interface has been developed and applied to the production design stage. The system could increase design efficiency and minimize human error owing to recent CAD technique. However, there has been no approach to the pre-nesting design stage at all in early modeling process especially where ship model should be handled at more than two design stages using AVEVA Marine. A designer of the design stage needs artificial intelligence system beyond modeling automation when 3D model must be prepared in early modeling process using AVEVA Marine because they have focused on 2D nesting traditionally. In addition, they have a hard time figuring out the model prepared in previous design stage and modifying the model for steel purchase size in early modeling process. In this paper, artificial intelligence modeling system for automated application of steel margin in early modeling process using AVEVA Marine is developed in order to apply to the pre-nesting design stage that can detect effective segments before a calculation to find if a segment locates near block butt boundaries by filtering noise segments among lines, curves and surface intersections based on IT big data analysis.

  • PDF

A Methodological Study on an Assessment Model Developed for the Mitigation of Acid rain Causing Material - Focus on Sulfur Dioxide Emission Reduction Measures - (철강업에 있어서 산성비 원인물질 저감대책평가 모형 구축에 관한 연구 - 아황산가스를 중심으로 -)

  • Lee, Dong-Kun;Jung, Tae-Yong;Jeon, Seong-Woo
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.71-82
    • /
    • 1998
  • This study focuses on one of the most typical energy-intensive industries, the steel industry. The two-fold purpose of the study is to develop a model to assess measures to alleviate sulfur dioxide($SO_2$) emissions from the steel industry and to propose a concrete $SO_2$ emission reduction measure from the steel industry. This study partially employed and modified AIM(Asia-Pacific Integrated Model) developed by Japan National Environmental Research Institute to develop AIM/KOREA SULFUR model for simulation. In the study, a base scenario, which is BAU(Business As Usual) scenario, and mitigation scenarios(a use of low-sulfur contain fuel, fuel conversion to cleaner energy, an induction of desulfurization systems, and energy saving) were employed. The results of the simulation are summarized below: The sulphur dioxide emission from the steel industry in 1992 was estimated to be 252,000 metric tons; however, according to BAU scenario, sulphur dioxide emission is expected to be increased to 586,000 metric tons, which is 2.3 times greater than that in 1992 by year 2020. To alleviate such increasement, simulation results under various 7scenarios proved that some degrees of reduction may be possible by an induction of desulfurization systems although there may be numerous ways to interpretate the simulation results; however, the bottom line is that it appears to be difficult to achieve the Korean Ministry of Environment's policy goal-a mitigation of sulphur dioxide concentration to 0.01ppm.

  • PDF

Employing a fiber-based finite-length plastic hinge model for representing the cyclic and seismic behaviour of hollow steel columns

  • Farahi, Mojtaba;Erfani, Saeed
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.501-516
    • /
    • 2017
  • Numerical simulations are prevalently used to evaluate the seismic behaviour of structures. The accuracy of the simulation results depends directly on the accuracy of the modelling techniques employed to simulate the behaviour of individual structural members. An empirical modelling technique is employed in this paper to simulate the behaviour of column members under cyclic and seismic loading. Despite the common modelling techniques, this technique is capable of simulating two important aspects of the cyclic and seismic behaviour of columns simultaneously. The proposed fiber-based modelling technique captures explicitly the interaction between the bending moment and the axial force in columns, and the cyclic deterioration of the hysteretic behaviour of these members is implicitly taken into account. The fiber-based model is calibrated based on the cyclic behaviour of square hollow steel sections. The behaviour of several column archetypes is investigated under a dual cyclic loading protocol to develop a benchmark database before the calibration procedure. The dual loading protocol used in this study consists of both axial and lateral loading cycles with varying amplitudes. After the calibration procedure, a regression analysis is conducted to derive an equation for predicting a varying calibrated modelling parameter. Finally, several nonlinear time-history analyses are conducted on a 6-story steel special moment frame in order to investigate how the results of numerical simulations can be affected by employing the intended modelling technique for columns instead of other common modelling techniques.

A modified RBSM for simulating the failure process of RC structures

  • Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan;Shen, Mingyan
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.219-229
    • /
    • 2018
  • In this paper, a modified rigid body spring model (RBSM) is proposed and used to analyze the damage and failure process of reinforced concrete (RC) structures. In the proposed model, the concrete is represented by an assembly of rigid blocks connected with a uniform distribution of normal and tangential springs to simulate the macroscopic mechanical behavior of concrete. Steel bars are evenly dispersed into rigid blocks as a kind of homogeneous axial material, and an additional uniform distribution of axial and dowel springs is defined to consider the axial stiffness and dowel action of steel bars. Perfect bond between the concrete and steel bars is assumed, and tension stiffening effect of steel bars is modeled by adjusting the constitutive relationship for the tensile reinforcement. Adjacent blocks are allowed to separate at the contact interface, which makes it convenient and easy to simulate the cracking process of concrete. The failure of the springs is determined by the Mohr-Coulomb type criterion with the tension and compression caps. The effectiveness of the proposed method is confirmed by elastic analyses of a cantilever beam under different loading conditions and failure analyses of a RC beam under two-point loading.

Improvement of Rolling Force Estimation by Modificaiton Function for Hot Steel Strip Rolling Process (보정함수를 이용한 강판의 열간 압연하중 예측 정도향상)

  • 문영훈;이경종;이필종;이준정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1193-1201
    • /
    • 1993
  • A new deformation resistance model for hot steel strip rolling process was formulated to improve the accuracy of roll force estimation. To improve the existing deformation resistance model more precisely, a modification function was introduced in this study. For the modification function, several factors considering material and operational conditions have been investigated and the optimal modification function was determined under the principle of minimum variability. The newly formulated modification function was applied to the deformation resistance model for ultra-low carbon steel and showed improved accuracy with about 30% decrease in terms of standard deviation of predicted roll force values against measured ones.

A Ship Scheduling Model for Raw Material Transportation with Yard Storage Constraints in a Steel Mill (재고수준을 고려한 제철원료 수송을 위한 선박 일정계획 수립 모형)

  • Seong, Deok-Hyun;Suh, Min-Soo;Kim, Sang-Won;Kim, Woo-Jin
    • Journal of Information Technology Services
    • /
    • v.10 no.3
    • /
    • pp.49-59
    • /
    • 2011
  • A ship scheduling model is presented for the raw material transportation problem with yard storage constraints in a steel mill. The problem is formulated as 0, 1 mixed integer programming considering such constraints as loading port conditions, ship size and hold capacity, unloading conditions, and yard storage space. In addition, inventory related constraints including safety stock are taken into consideration to support the continuous operations of steel making process. The proposed model has been implemented and applied successfully to a real world problem, and its results show the improvement of performance compared to the traditional method. For example, the arrival dates of ships are determined satisfying the constraints. The total inventory level is minimized at the stock yard as a result. Also, the safety inventory level is always kept at the planning stage, and the standard deviation of total inventory level is reduced significantly. Further research is expected to develop efficient heuristics to have a better response time for even larger scale problems.

Degradation and damage behaviors of steel frame welded connections

  • Wang, Meng;Shi, Yongjiu;Wang, Yuanqing;Xiong, Jun;Chen, Hong
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.357-377
    • /
    • 2013
  • In order to study the degradation and damage behaviors of steel frame welded connections, two series of tests in references with different connection constructions were carried out subjected to various cyclic loading patterns. Hysteretic curves, degradation and damage behaviours and fatigue properties of specimens were firstly studied. Typical failure modes and probable damage reasons were discussed. Then, various damage index models with variables of dissipative energy, cumulative displacement and combined energy and displacement were summarized and applied for all experimental specimens. The damage developing curves of ten damage index models for each connection were obtained. Finally, the predicted and evaluated capacities of damage index models were compared in order to describe the degraded performance and failure modes. The characteristics of each damage index model were discussed in depth, and then their distributive laws were summarized. The tests and analysis results showed that the loading histories significantly affected the distributive shapes of damage index models. Different models had their own ranges of application. The selected parameters of damage index models had great effect on the developing trends of damage curves. The model with only displacement variable was recommended because of a more simple form and no integral calculation, which was easier to be formulated and embedded in application programs.