• Title/Summary/Keyword: steel model

Search Result 4,477, Processing Time 0.035 seconds

Nonlinear Strut-Tie Model Approach in Pre-tensioned Concrete Deep Beams (높이가 큰 프리텐션 콘크리트 보에서의 비선형 스트럿-타이 모델 방법)

  • 윤영묵;이원석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.847-852
    • /
    • 2000
  • This paper presents an evaluation of the behavior and strength of two pre-tensioned concrete deep beams tested to failure with using the nonlinear strut-tie model approach. In the approach, the effective prestressing forces represented be equivalent external loads are gradually introduced along its transfer length in the nearest strut-tie model joints, the friction at the interface of main diagonal shear cracks is modeled by diagonal struts along the direction of the cracks in strut tie-model, and additional positioning of concrete ties a the place of steel ties is incorporated. Through the analysis of pre-tensioned concrete deep beams, the nonlinear strut-tie model approach proved to present effective solutions for prediction the essential aspects of the behavior and strength of pre-tensioned concrete deep beams.

  • PDF

Nonlocal vibration of DWCNTs based on Flügge shell model using wave propagation approach

  • Asghar, Sehar;Naeem, Muhammad N.;Hussain, Muzamal;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.599-613
    • /
    • 2020
  • In this article, free vibration attributes of double-walled carbon nanotubes based on nonlocal elastic shell model have been investigated. For this purpose, a nonlocal Flügge shell model is established to observe the small scale effect. The wave propagation is employed to frame the governing equations as eigenvalue system. The influence of nonlocal parameter subjected to different end supports has been overtly examined. A suitable choice of material properties and nonlocal parameter been focused to analyze the vibration characteristics. The new set of inner and outer tubes radii investigated in detail against aspect ratio and length. The dominance of boundary conditions via nonlocal parameter is shown graphically. The results generated furnish the evidence regarding applicability of nonlocal shell model and also verified by earlier published literature.

Torsional Analysis of RC Beam Using Average Strains (평균변형률을 이용한 RC보의 비틀림 해석)

  • Park, Chang-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.157-165
    • /
    • 2002
  • Nonlinear analysis of the reinforced concrete beam subjected to torsion is presented. Seventeen equations involving seventeen variables are derived from the equilibrium equation, compatibility equation, and the material constitutive laws to solve the torsion problem. Newton method was used to solve the nonlinear simultaneous equations and efficient algorithms are proposed. Present model covers the behavior of reinforced concrete beam under pure torsion from service load range to ultimate stage. Tensile resistance of concrete after cracking is appropriately considered. The softened concrete truss model and the average stress-strain relations of concrete and steel are used. To verify the validity of present model, the nominal torsional moment strengths according to ACI-99 code and the ultimate torsional moment by present model are compared to experimental torsional strengths of 55 test specimens found in literature. The ultimate torsional moment strengths by the present model show good results.

A Hybrid Knowledge Model for Structural Monitoring and Diagnosis (구조물 모니터링 및 진단을 위한 지식모델의 개발)

  • 김성곤
    • Computational Structural Engineering
    • /
    • v.9 no.2
    • /
    • pp.163-171
    • /
    • 1996
  • A hybrid knowledge model which amalgamates an object-oriented modeling approach and logic programming implementation is presented for structural health monitoring and diagnosis of instrumented structures. Domain knowledge in structural monitoring and diagnosis is formalized and represented in a logic-based object-oriented modeling environment. The model and environment have been implemented and illustrated in the context of a laboratory case study of damage detection in a successively damaged steel structure.

  • PDF

Verification and application of beam-particle model for simulating progressive failure in particulate composites

  • Xing, Jibo;Yu, Liangqun;Jiang, Jianjing
    • Structural Engineering and Mechanics
    • /
    • v.8 no.3
    • /
    • pp.273-283
    • /
    • 1999
  • Two physical experiments are performed to verify the effectiveness of beam-particle model for simulating the progressive failure of particulate composites such as sandstone and concrete. In the numerical model, the material is schematized at the meso-level as an assembly of discrete, interacting particles which are linked through a network of brittle breaking beams. The uniaxial compressive tests of cubic and parallelepipedal specimens made of carbon steel rod assembly which are glued together by a mixture are represented. The crack patterns and load-displacement response observed in the experiments are in good agreement with the numerical results. In the application respect of beam-particle model to the particulate composites, the influence of defects, particle arrangement and boundary conditions on crack propagation is approached, and the correlation existing between the cracking evolution and the level of loads imposed on the specimen is characterized by fractal dimensions.

Reinforced high-strength concrete square columns confined by aramid FRP jackets -part II: modeling

  • Wu, Han-Liang;Wang, Yuan-Feng;Ma, Yi-Shuo
    • Steel and Composite Structures
    • /
    • v.11 no.4
    • /
    • pp.325-340
    • /
    • 2011
  • Based on the experimental data presented in part I of these companion papers, a semi-empirical model is proposed for axial stress-strain curves of reinforced high-strength concrete square columns confined by aramid fiber reinforced polymer (FRP) jackets. Additionally, a three-dimensional finite element model is developed to simulate the mechanical behaviors of the columns. In the finite element model, both material nonlinear and contact nonlinear are taken into account. Moreover, the influence of contact nonlinear (i.e., the end friction on the contact surface between test machines and specimens) is investigated deeply. Predictions from both the semi-empirical model and the finite element model agree with the experimental results, and it is also demonstrated that the friction coefficient of end friction notably affect the properties of columns when it ranges from 0.00 to 0.25.

Nonlinear finite element model updating with a decentralized approach

  • Ni, P.H.;Ye, X.W.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.683-692
    • /
    • 2019
  • Traditional damage detection methods for nonlinear structures are often based on simplified models, such as the mass-spring-damper and shear-building models, which are insufficient for predicting the vibration responses of a real structure. Conventional global nonlinear finite element model updating methods are computationally intensive and time consuming. Thus, they cannot be applied to practical structures. A decentralized approach for identifying the nonlinear material parameters is proposed in this study. With this technique, a structure is divided into several small zones on the basis of its structural configuration. The unknown material parameters and measured vibration responses are then divided into several subsets accordingly. The structural parameters of each subset are then updated using the vibration responses of the subset with the Newton-successive-over-relaxation (SOR) method. A reinforced concrete and steel frame structure subjected to earthquake loading is used to verify the effectiveness and accuracy of the proposed method. The parameters in the material constitutive model, such as compressive strength, initial tangent stiffness and yielding stress, are identified accurately and efficiently compared with the global nonlinear model updating approach.

Failure simulation of nuclear pressure vessel under severe accident conditions: Part I - Material constitutive modeling

  • Eui-Kyun Park;Ji-Su Kim;Jun-Won Park;Yun-Jae Kim;Yukio Takahashi;Kukhee Lim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4146-4158
    • /
    • 2023
  • This paper proposes a combined plastic and creep constitutive model of A533B1 pressure vessel steel to simulate progressive deformation of nuclear pressure vessels under severe accident conditions. To develop the model, recent tensile test data covering a wide range of temperatures (from RT to 1,100 ℃) and strain rates (from 0.001%/s to 1.0%/s) was used. Comparison with experimental data confirms that the proposed combined plastic and creep model can well reflect effects of temperature and strain rate on tensile behaviour up to failure. In the companion paper (Part II), the proposed model will be used to simulate OECD lower head failure (OLHF) test data.

Progressive Inelastic Deformation Characteristics of Cylindrical Structure with Plate-to-Shell Junction Under Moving Temperature Front

  • Lee, Hyeong-Yeon;Kim, Jong-Bum
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.400-408
    • /
    • 2003
  • A study on the progressive inelastic deformation behavior of the 316 L stainless steel cylindrical structure with plate-to-shell junction under moving temperature front was carried out by structural test and analysis. The structural test intends to simulate the thermal ratcheting behavior occurring at the reactor baffle of the liquid metal reactor as free surface of hot sodium pool moves up and down under plant transients. The thermal ratchet load that heats the specimen up to 550$^{\circ}C$ was applied repeatedly and residual deformation was measured. The thermal ratcheting test was carried out with two types of cylindrical structures, one with plate to-shell junction and the other without the junction to investigate the effects of the geometric discontinuities on the global ratcheting deformation. The temperature distributions of the test specimens were measured and were used for the ratcheting analysis. The ratchet deformations were analyzed with the constitutive equation of the non-linear combined hardening model. The analysis results were in good agreement with those of the structural tests.

EFFECT OF HARDNESS CHANGES AND MICROSTRUCTURAL DEGRADATION ON CREEP BEHAVIOR OF A Mod.9Cr-1Mo STEEL

  • PARK K. S.;CHUNG H. S.;LEE K. J.;JUNG Y. G.;KANG C. Y.;ENDO T.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.45-52
    • /
    • 2005
  • Interrupted creep tests for investigating the structural degradation during creep were conducted for a Mod.9Cr-1Mo steel in the range of stress from 71 to 167 MPa and temperature from 873 to 923 K. The change of hardness and tempered martensitic lath width was measured in grip and gauge parts of interrupted creep specimens. The lath structure was thermally stable in static conditions. However, it was not stable during creep, and the structural change was enhanced by creep strain. The relation between the change in lath width and creep strain was described quantitatively. The change in Vickers hardness was expressed by a single valued function of creep LCR(life consumption ratio). Based on the empirical relation between strain and lath width, a model was proposed to describe the relation between change in hardness and creep LCR. The comparison of the model with the empirical relation suggests that about 65% of hardness loss is due to the decrease of dislocation density accompanied by the movement of lath boundaries. The role of precipitates on subboundaries was discussed in connection with the abnormal subgrain growth appearing in low stress regime.