DOI QR코드

DOI QR Code

Reinforced high-strength concrete square columns confined by aramid FRP jackets -part II: modeling

  • Wu, Han-Liang (School of Civil Engineering, Beijing Jiaotong University) ;
  • Wang, Yuan-Feng (School of Civil Engineering, Beijing Jiaotong University) ;
  • Ma, Yi-Shuo (School of Civil Engineering, Beijing Jiaotong University)
  • Received : 2010.05.27
  • Accepted : 2011.06.22
  • Published : 2011.07.25

Abstract

Based on the experimental data presented in part I of these companion papers, a semi-empirical model is proposed for axial stress-strain curves of reinforced high-strength concrete square columns confined by aramid fiber reinforced polymer (FRP) jackets. Additionally, a three-dimensional finite element model is developed to simulate the mechanical behaviors of the columns. In the finite element model, both material nonlinear and contact nonlinear are taken into account. Moreover, the influence of contact nonlinear (i.e., the end friction on the contact surface between test machines and specimens) is investigated deeply. Predictions from both the semi-empirical model and the finite element model agree with the experimental results, and it is also demonstrated that the friction coefficient of end friction notably affect the properties of columns when it ranges from 0.00 to 0.25.

Keywords

References

  1. American Concrete Institute (ACI). (1984). "State of the art report of high-strength concrete." ACI-363R-84, ACI-363 Committee, Detroit.
  2. Ansari, F., and Li, Q. (1998). "High-strength concrete subjected to triaxial compression." ACI Mater. J., 95(6), 747-755.
  3. ANSYS Inc. Corporate. (2006). "The Ansys 10.0 user documents. http://www.ansys.com/services/ documentation/index.htm.). (Nov. 2, 2007)
  4. Baltay, P., and Gjelsvik, A. (1990). "Coefficient of friction for steel on concrete at high normal stress." J. Mater. Civ. Eng., 2(1), 46-49. https://doi.org/10.1061/(ASCE)0899-1561(1990)2:1(46)
  5. Braga, F., Gigliotti, R., and Laterza, M. (2006). "Analytical stress-strain relationship for concrete confined by steel stirrups and/or FRP jackets." J. Struct. Eng., 132(9), 1402-1416. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:9(1402)
  6. Campione, G. (2008). "Analytical model for high-strength concrete columns with square cross-section." Struct. Eng. Mech., 28(3): 295-316. https://doi.org/10.12989/sem.2008.28.3.295
  7. Candappa, D. C., Sanjayan, J. G.., and Setunge, S. (2001). "Complete triaxial stress-strain curves of high-strength concrete." J. Mater. Civ. Eng., 13(3), 209-215. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:3(209)
  8. Cairns, J., Du, Y., and Law, D. (2007). "Influence of corrosion on the friction characteristics of the steel/concrete interface." Constr. Build. Mater., 21(1), 190-197. https://doi.org/10.1016/j.conbuildmat.2005.06.054
  9. Debaiky, A. S., Green, M. F., and Hope, B. B. (2007). "Modeling of corroded FRP-wrapped reinforcement concretecolumns in axial compression." J. Compos. Constr., 11(6), 556-564. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:6(556)
  10. Deniaud, C., and Neale, K. W. (2006). "An assessment of constitutive models for concrete columns confined with fibre composite sheets." Compos. Struct., 73(3), 318-330. https://doi.org/10.1016/j.compstruct.2005.02.003
  11. Eid, R., and Paultre, P. (2007). "Plasticity-based model for circular concrete columns confined with fiber-composite sheets." Eng. Struct., 29(12), 3301-3311. https://doi.org/10.1016/j.engstruct.2007.09.005
  12. Forquin, P., Gary, G., and Gatuingt, F. (2008). "A testing technique for concrete under confinement at high rates of strain." Int. J. Impact Eng., 35(6), 425-446. https://doi.org/10.1016/j.ijimpeng.2007.04.007
  13. Fujikake, K., Mindess, S., and Xu, H. (2004). "Analytical model for concrete confined with fiber reinforced polymer composite." J. Compos. Constr., 8(4), 341-351. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:4(341)
  14. Grassl, P. (2004). "Modelling of dilation of concrete and its effect in triaxial compression." Finite Ele. Ana. Design, 40(9), 1021-1033. https://doi.org/10.1016/j.finel.2003.04.002
  15. Harajli, M. H. (2006). "Axial stress-strain relationship for FRP confined circular and rectangular concrete columns." Cem. Concr. Compos., 28(10), 938-948. https://doi.org/10.1016/j.cemconcomp.2006.07.005
  16. Karabinis, A. I., and Rousakis, T. C. (2002). "Concrete confined by FRP material: a plasticity approach." Eng. Struct., 24(7), 923-932. https://doi.org/10.1016/S0141-0296(02)00011-1
  17. Li, Y. F., Lin, C. T., and Sung, Y. Y. (2003). "A constitutive model for concrete confined with carbon fiber reinforced plastics." Mech. Mater., 35(3), 603-619. https://doi.org/10.1016/S0167-6636(02)00288-0
  18. Lin, H. J., and Liao, C. I. (2004). "Compressive strength of reinforced concrete column confined by composite material." Compos. Struct., 65(2), 239-250. https://doi.org/10.1016/j.compstruct.2003.11.001
  19. Lorenzis, L. D. (2001). "A comparative study of models on confinement of concrete cylinders with FRP composites." Research Reference Prepared of Chalmers University Of Technology, Goteborg, Sweden.
  20. Maalej, M., Tanwongsval, S., and Paramasivam, P. (2003). "Modelling of rectangular RC columns strengthened with FRP." Cem. Concr. Compos., 25(2), 263-276. https://doi.org/10.1016/S0958-9465(02)00017-3
  21. Malvar, L. J., Morrill, K. B., and Crawford, J. E. (2004). "Numerical modeling of concrete confined by fiber-reinforced composites." J. Compos. Constr., 8(4), 315-322. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:4(315)
  22. Mirmiran, A., Zagers, K., and Yuan, W. (2000). "Nonlinear finite element modeling of concrete confined by fibercomposites." Fininte Ele. Ana. Design, 35(1), 79-96. https://doi.org/10.1016/S0168-874X(99)00056-6
  23. Montoya, E., Vecchio, F. J., and Sheikh, S. A. (2004). "Numerical evaluation of the behaviour of steel- and FRP-confined concrete columns using compression field modelling." Eng. Struct., 26(11), 1535-1545. https://doi.org/10.1016/j.engstruct.2004.05.009
  24. Mosalam, K. M., Talaat, M., and Binici, B. (2007). "A computational model for reinforced concrete members confinedwith fiber reinforced polymer lamina: implementation and experimental validation." Compos. Part B: Eng., 38(5), 598-613. https://doi.org/10.1016/j.compositesb.2006.07.018
  25. Mukherjee, A., Boothby T. E., Bakis, C. E., Joshi, M. V. , and Maitra, S. R. (2004). "Mechanical behavior of fiber-reinforced polymer-wrapped concrete columns-complicating effects." J. Compos. Constr., 8(2), 97-103. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:2(97)
  26. Parvin, A., and Jamwal, A. S. (2006). "Performance of externally of FRP reinforced columns for changes in angle and thickness of the wrap and concrete strength." Compos. Struct., 73(4), 451-437. https://doi.org/10.1016/j.compstruct.2005.02.019
  27. Parvin, A., and Wang, W. (2001). "Behavior of FRP jacketed concrete columns under eccentric loading." J. Compos. Constr., 5(3), 146-152. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:3(146)
  28. Rabbat, B. G., and Russell, H. G. (1985). "Friction coefficients of steel on concrete or grout." J. Struct. Eng., 111(3), 505-515. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:3(505)
  29. Restrepo, J. I., and De Vino, B. (1995). "Enhancement of the axial load carrying capacity of reinforced concrete columns by means of fiberglass-epoxy jackets." Proc. of Advanced Composite Materials in Bridges and Structures II, Montreal, 547-553.
  30. Richard, F. E., and Abbott, B. J. (1975). "Versatile elastic-plastic stress-strain formula." J. Eng.g Mech. Div., 101(44), 511-515.
  31. Rochette, P., Labossiere, P. (1996). "A plasticity approach for concrete columns confined with composite materials." Proc. of Advanced Composite Materials in Bridges and Structures, CSCE, 359-366.
  32. Rougier, V. C., and Luccioni, B. M. (2007). "Numerical assessment of FRP retrofitting systems for reinforced concrete elements." Eng. Struct., 29(8), 1664-1675. https://doi.org/10.1016/j.engstruct.2006.09.008
  33. Samaan, M., Mirmiran, A., and Shahawy, M. (1998). "Model of concrete confined by fiber composites." J. Struct.Eng., 124(9), 1025-1031. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1025)
  34. Spiegel, L., and Limbrunner, G. F. (1998). Reinforced concrete design. Prentice Hall, USA.
  35. Wang, Y. C., and Hsu, K.. (2008). "Design of FRP-wrapped reinforced concrete columns for enhancing axial load carrying capacity." Compos. Struct., 82(1), 132-139. https://doi.org/10.1016/j.compstruct.2007.04.002
  36. Wu, Han-liang, and Wang, Yuan-feng. (2010). "Experimental study on reinforce high-strength concrete short columns confined with AFRP sheets." Steel Compos. Struct., 10(6), 501-516. https://doi.org/10.12989/scs.2010.10.6.501
  37. Xiao, Y., and Wu, H. (2000). "Compressive behavior of concrete confined by carbon fiber composite jackets." J. Mater. Civ. Eng., 12(2), 139-146. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:2(139)
  38. Youssef, M. N., Feng, M. Q., Mosallam, A. S. (2007). "Stress-strain model for concrete confined by FRP composites." Compos. Part B: Eng., 38(5), 614-628. https://doi.org/10.1016/j.compositesb.2006.07.020