• Title/Summary/Keyword: steel model

Search Result 4,477, Processing Time 0.032 seconds

Mechanical Properties of Hot Working Die Steel and Fatigue Analysis Model of Casting Mold (열간 금형재의 기계적 성질과 주조금형 피로해석모델)

  • 여은구;황성식;이용신;곽시영;김정태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.405-408
    • /
    • 2003
  • Generally, the life of casting mold is limited by fatigue fracture or dimensional inaccuracy originated from wear in high temperature. Although recent research of metallic materials in high temperature fatigue have been much accomplished, many studies on brittle material as a die steel in high temperature fatigue does not have been reported. Especially, the study on the fatigue behavior over the transformation temperature is not studied sufficiently because of its difficult analysis and experiment. Therefore, reliable results of brittle material in high temperature fatigue behavior are needed. In this paper, stress-strain curves and stress-life curves in die STD61 steel are carefully examined between room temperature and 90$0^{\circ}C$, as the basic experimental data are used to predict from fatigue life of casting mold.

  • PDF

Optimal distribution of steel plate slit dampers for seismic retrofit of structures

  • Kim, Jinkoo;Kim, Minjung;Eldin, Mohamed Nour
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.473-484
    • /
    • 2017
  • In this study a seismic retrofit scheme for a building structure was presented using steel plate slit dampers. The energy dissipation capacity of the slit damper used in the retrofit was verified by cyclic loading test. Genetic algorithm was applied to find out the optimum locations of the slit dampers satisfying the target displacement. The seismic retrofit of the model structure using the slit dampers was compared with the retrofit with enlarging shear walls. A simple damper distribution method was proposed using the capacity spectrum method along with the damper distribution pattern proportional to the inter-story drifts. The validity of the simple story-wise damper distribution procedure was verified by comparing the results of genetic algorithm. It was observed that the capacity-spectrum method combined with the simple damper distribution pattern leaded to satisfactory story-wise distribution of dampers compatible with the optimum solution obtained from genetic algorithm.

Roll Forming Analysis for High Strength Steel Bumper Process (고장력강 범퍼 빔의 롤 포밍 공정)

  • Kim, Dong Hong;Jung, Dong Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.797-801
    • /
    • 2013
  • Today's automotive industry is evolving toward low-emissions or zero-emissions high-efficiency vehicles. Highly efficient power sources are required, as well as high strength steels for various parts to increase safety. In this study, we investigated the roll-forming process for the development of high strength, lightweight steel bumper beams. The roll-forming process was analyzed using the software package Shape-RF in combination with a rigid-plastic finite element method model. An optimal roll-forming process based on roll-pass was obtained using finite element method simulations.

A Study on the Detail of Vertical Stiffener of Plate Girder (플레이트 거더교의 수직 보강재 구조상세에 관한 연구)

  • KYUNG, Kab Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.117-125
    • /
    • 1996
  • The stress patterns of vertical stiffener of plate girder bridge were examined by existing data of actual measurement stress for steel bridges and the structural details of vertical stiffener of plate girder bridge having seeked rationalization and abbreviation were investigated by 1/2 bridge model. As the results, the out-of-plane stress occur in the upper parts of vertical stiffner and fatigue cracks by the action of alternative stress is apt to occur in web plate of lower parts vertical stiffener. Also, the gap between lower parts of vertical stiffner and lower flange of plate girder bridge seeking rationalization and abbreviation is effective to adopt 100mm.

  • PDF

Structural Behavior of Worn Tire Attached to Carbon Fiber Steel Pile by Wave and Current Forces (파랑 및 조류력에 의한 탄섬유강 말뚝에 부착된 폐타이어의 구조거동)

  • 홍남식;이상화
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.13-19
    • /
    • 2004
  • The structural behavior of a worn tire, attached to carbon fiber steel pile by current and wave forces, has been investigated through the numerical method. The finite element model has been developed, by considering that the composite material of rubber and cord is orthotropic, the rubber is isotropic, and that all the material behaves as linear elastic. The pressure distribution by wave and current, around the worn tire, has been estimated through the adjustment for the concept of flow separation. Also, the structural behavior of the worn tire has been examined, by comparing the situation wherein the space between the pile is reinforced, and tire as elastic and isotropic material, with the one left empty. Through this comparison, it is determined that the space between pile and tire has to be filled with elastic and isotropic material, in order to avoid the failure by wave and current action.

Ballistic behavior of steel sheet subjected to impact and perforation

  • Jankowiak, Tomasz;Rusinek, Alexis;Kpenyigba, K.M.;Pesci, Raphael
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.595-609
    • /
    • 2014
  • The paper is reporting some comparisons between experimental and numerical results in terms of failure mode, failure time and ballistic properties of mild steel sheet. Several projectile shapes have been considered to take into account the stress triaxiality effect on the failure mode during impact, penetration and perforation. The initial and residual velocities as well as the failure time have been measured during the tests to estimate more physical quantities. It has to be noticed that the failure time was defined using a High Speed Camera (HSC). Thanks to it, the impact forces (average and maximum level), were analyzed using numerical simulations together with an analytical description coupled to experimental observations. The key point of the model is the consideration of a shape function to define the pulse loading during perforation.

The Effect of Optimum In-process Electrolytic Dressing in the Mirror-like Grinding of Die steel by Superfind Abrasive wheel (초지립 지석에 의한 금형강 경면연삭시 최적 연속 전해드레싱의 영향)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.16-25
    • /
    • 1999
  • In recent years, grinding techniques for precision machining of brittle materials used in die, model and optical parts have been improved by using superfine abrasive wheel and precision grinding machine. The completion of optimum dressing of superfine abrasive wheel makes possible the effective precision grinding of die steel(STD-11). In this study, a new system and the grinding mechanism of optimum in-process electrolytic dressing were proposed. This method can carry out optimum in-process electrolytic dressing of superfine abrasive wheel. Therefore, the optimum in-process electrolytic dressing is a good method to obtain the efficiency and mirror-like grinding of STD-11.

  • PDF

A Study on the Fracture Resistance at the Crack Tip in Dual Phase Steel (복합조직강 의 균열선단 에서의 파괴저항 에 관한 연구)

  • 김정규;오재민;김형채
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.564-571
    • /
    • 1985
  • The estimation of fracture toughness in inhomogeneous material is still insufficient because it is difficult to get information of fracture initiation at the crack tip. Therefore, martensite-ferrite dual phase steel was prepared for a model material and micro-fracture behavior was investigated in the region of pre-fatigue crack in order to understand the characteristic of fracture resistance in inhomogeneous materials. In the case of severely inhomogeneous state, micro-fracture appearance is not distributed homogenously so that the estimation of fracture toughness is hardly possible. On the other hand when the grain size is refined or the strength of martensite is lowered, micro-fracture appearance is distributed homogenously and fracture toughness remarkably increases.

Development of Carbon Emission Casual Map Considering Variable Factors in Steel Erection Work (가변요인을 고려한 철골세우기 작업의 탄소배출 인과지도 개발)

  • Nam, Chulu;Lee, Dongyoun;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.75-76
    • /
    • 2016
  • Because of variable factors in construction phase, measurement of carbon emission in construction industry is more difficult than in other industries. To enhance accuracy of the measurement, the impact of variable factors must be considered. In this paper, to understand the influence of variable factors in steel erection work, a carbon emission casual map was developed. The map demonstrates that the considerations of variable factors in measurement of carbon emission improves the accuracy. The results of this paper are expected to contribute to development of carbon emission casual map and carbon emission measurement model for the entire construction phase.

  • PDF

Forming Limit Diagram Prediction for Ultra-Thin Ferritic Stainless Steel Using Crystal Plasticity Finite Element Method (결정소성 유한요소해석에 의한 극박 스테인리스강의 성형한계선도 예측)

  • Bong, H.J.;Lee, M.G.;Han, H.N.
    • Transactions of Materials Processing
    • /
    • v.26 no.3
    • /
    • pp.144-149
    • /
    • 2017
  • In order to characterize the macroscopic mechanical response of ultra-thin (0.1 mm thick) ferritic stainless steel sheet at various loading paths, a crystal plasticity finite element method (CP-FEM) was introduced. The accuracy of the prediction results was validated by comparing with the experimental data. Based on the results, the forming limit diagram (FLD) was predicted using a modified Marchinicak-Kuczinski model coupled to a non-quadratic anisotropic yield function, namely, Yld2000-2d. The predicted FLD was found to be in good agreement with the experimental data.