DOI QR코드

DOI QR Code

Forming Limit Diagram Prediction for Ultra-Thin Ferritic Stainless Steel Using Crystal Plasticity Finite Element Method

결정소성 유한요소해석에 의한 극박 스테인리스강의 성형한계선도 예측

  • Received : 2017.01.10
  • Accepted : 2017.05.23
  • Published : 2017.06.01

Abstract

In order to characterize the macroscopic mechanical response of ultra-thin (0.1 mm thick) ferritic stainless steel sheet at various loading paths, a crystal plasticity finite element method (CP-FEM) was introduced. The accuracy of the prediction results was validated by comparing with the experimental data. Based on the results, the forming limit diagram (FLD) was predicted using a modified Marchinicak-Kuczinski model coupled to a non-quadratic anisotropic yield function, namely, Yld2000-2d. The predicted FLD was found to be in good agreement with the experimental data.

Keywords

References

  1. A. Hermann, T. Chaudhuri, P. Spagnol, 2005, Bipolar Plates for PEM Fuel Cells: A Review, Int. J. Hydrogen Energy, Vol. 30, No. 12, pp. 1297-1302. https://doi.org/10.1016/j.ijhydene.2005.04.016
  2. H. J. Bong, F. Barlat, M.-G. Lee, 2016, Probing Formability Improvement of Ultra-thin Ferritic Stainless Steel Bipolar Plate of PEMFC in Nonconventional Forming Process, Metall. Mater. Trans. A., Vol. 47, No. 8, pp. 4160-4174. https://doi.org/10.1007/s11661-016-3561-0
  3. H. J. Bong, F. Barlat, M.-G. Lee, D. C. Ahn, 2012, The Forming Limit Diagram of Ferritic Stainless Steel Sheets: Experiments and Modeling, Int. J. Mech. Sci., Vol. 64, No. 1, pp. 1-10. https://doi.org/10.1016/j.ijmecsci.2012.08.009
  4. H. J. Bong, F. Barlat, J. Lee, M.-G. Lee, J. H. Kim, 2016, Application of Central Composite Design for Optimization of Two-stage Forming Process using Ultra-thin Ferritic Stainless Steel, Met. Mater. Int., Vol. 22, No. 2, pp. 276-287. https://doi.org/10.1007/s12540-015-4325-x
  5. R. K. Verma, P. Biswas, T. Kuwabara, K. Chung, 2014, Two Stage Deformation Modeling for DP 780 Steel Sheet using Crystal Plasticity, Mater. Sci. Eng. A., Vol. 604, pp. 98-102. https://doi.org/10.1016/j.msea.2014.03.002
  6. M. G. Lee, H. Lim, B. L. Adams, J. P. Hirth, R. H. Wagoner, 2010, A Dislocation Density-based Single Crystal Constitutive Equation, Int. J. Plast., Vol. 26, No. 7, pp. 925-938. https://doi.org/10.1016/j.ijplas.2009.11.004
  7. U. F. Kocks, 1976, Laws for Work-hardening and Low-temperature Creep., J. Eng. Mater. Technol. Trans. ASME, Vol. 98, No. 1, pp. 76-85. https://doi.org/10.1115/1.3443340
  8. J.-I Hamada, N. Ono, H. Inoue, 2011, Effect of Texture on r-value of Ferritic Stainless Steel Sheets, ISIJ Int., Vol. 51, No. 10, pp. 1740-1748. https://doi.org/10.2355/isijinternational.51.1740
  9. F. Barlat, J. C. Brem, J. W. Yoon, K. Chung, R. E. Dick, D. J. LEge, F. Pourboghrat, S.-H. Choi, E. Chu, 2003, Plane Stress Yield Function for Aluminum Alloy Sheets-part 1: Theory, Int. J. Plast., Vol. 19, No. 9, pp. 1297-1319. https://doi.org/10.1016/S0749-6419(02)00019-0
  10. H. Lim, C. R. Weinberger, C. C. Battaile, T. E. Buchheit, 2013, Application of Generalized Non-Schmid Yield Law to Low-temperature Plasticity in BCC Transition Metals, Modelling Simul. Mater. Sci. Eng., Vol. 21, No. 4, p. 045015. https://doi.org/10.1088/0965-0393/21/4/045015
  11. Z. Marciniak, K. Kuczyński, T. Pokora, 1973, Influence of the Plastic Properties of a Material on the Forming Limit Diagram for Sheet Metal in Tension, Int. J. Mech. Sci., Vol. 15, No. 10, pp. 789-800. https://doi.org/10.1016/0020-7403(73)90068-4
  12. A. Parmar, P. B. Mellor, J. Chakrabarty, 1977, A New Model for the Prediction of Instability and Limit Strains in Thin Sheet Metal, Int. J. Mech. Sci., Vol. 19, No. 7, pp. 389-398. https://doi.org/10.1016/0020-7403(77)90039-X