• Title/Summary/Keyword: steel fiber reinforcement

Search Result 475, Processing Time 0.02 seconds

Application of Concentrated FRP Bars to Enhance the Capacity of Two-Way Slabs (2방향 슬래브의 성능 향상을 위한 집중 배근된 FRP 바의 적용)

  • Lee, Joo-Ha;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.727-734
    • /
    • 2007
  • The influence of the differences in the physical and mechanical properties between fiber-reinforced polymer (FRP) and conventional steel, concentrated reinforcement in the immediate column region, as well as using steel fiber-reinforced concrete (SFRC) in the slab near the column faces, on the punching behavior of two-way slabs were investigated. The punching shear capacity, stiffness, ductility, strain distribution, and crack control were investigated. Concentrating of the slab reinforcement and the use of SFRC in the slab enhanced the punching behavior of the slabs reinforced with glass fiber-reinforced polymer (GFRP) bars. In addition the test results of the slabs with concentrated reinforcement were compared with various code equations and the predictions proposed in the literature specifically for FRP-reinforced slabs. An appropriate method for determining the reinforcement ratio of slabs with a banded distribution was also investigated to allow predictions to properly reflect the benefit of the slab reinforcement concentration.

Strength and Ductility of Steel Fiber Reinforced Composite Beams without Shear Reinforcements (전단보강근이 없는 강섬유 보강 합성보의 강도 및 연성 능력)

  • Oh, Young-Hun;Nam, Young-Gil;Kim, Jeong-Hae
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.103-111
    • /
    • 2007
  • Experimental study was carried out to investigate the structural performance of composite beams with steel fiber concrete and angle. For this purpose, seven specimens composed of two RC beams with or without steel fiber and five composite beams with steel fiber and angle were constructed and tested. All specimens had no web shear reinforcement. Main variables for the specimens were tensile reinforcement ratio and fiber volume fraction. Based on the test results, structural performance such as strength, stiffness, ductility and energy dissipation capacity was evaluated and compared with the predicted strength. The prediction of flexure and shear strength gives a good relationship with the observed strength. The strength, ductility and energy dissipation capacity are increased, as the fiber volume fraction is increased. Meanwhile, high tensile reinforcement ratio resulted in the reduction of ductility and energy dissipation capacity for the composite beams.

Hysteretic Behavior Evaluation of a RC Coupling Beam using a Steel Fiber and Diagonal Reinforcement (강섬유와 묶음철근 보강을 통한 고성능 연결보의 이력거동 평가)

  • Oh, Hae Cheol;Lee, Kihak;Han, Sang Whan;Shin, Myoungsu;Jo, Yeong Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.291-298
    • /
    • 2015
  • In this paper, a bundled diagonal reinforcement using high performance steel fiber was proposed to enhance the construct ability and seismic performance. Experiments of coupling beam was composed of four specimens and the hysteretic behavior evaluated for reverse cyclic loading to specimens using high performance steel fiber. The main variables of the experiment is a amount of stirrup and bundled reinforcement, depending on whether the mix of steel fiber. Specimen which criteria was applied 100% of stirrup and bundled diagonal reinforcement of ACI318 criteria. With this, by appling same diagonal reinforcement, two specimens were created by adjusting stirrup of 75%, 50%. So, a total of four specimens were produced. When coupling beam was placed concrete, this experiment was mixed in a content of steel fiber 1%. All the specimens were produced by aspect ratio 3.5(l/h=1050/300) to a half-scale. In this result, two specimens as reduced to stirrup of 75%, 50% was no significant difference in the strength, stiffness and energy dissipation capacity, respectively compared to the stirrup of 100%.

Fiber reinforced concrete L-beams under combined loading

  • Ibraheem, Omer Farouk;Abu Bakar, B.H.;Johari, I.
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • The addition of steel fibers in concrete mixture is recognized as a non-conventional mass reinforcement scheme that improves the torsional, flexural, and shear behavior of structural members. However, the analysis of fiber reinforced concrete beams under combined torsion, bending, and shear is limited because of the complicated nature of the problem. Therefore, nonlinear 3D finite element analysis was conducted using the "ANSYS CivilFEM" program to investigate the behavior of fiber reinforced concrete L-beams. These beams were tested at different reinforcement schemes and loading conditions. The reinforcement case parameters were set as follows: reinforced with longitudinal reinforcement only and reinforced with steel bars and stirrups. All beams were tested under two different combined loading conditions, namely, torsion-to-shear ratio (T/V) = 545 mm (high eccentricity) and T/V = 145 mm (low eccentricity). Eight intermediate L-beams were constructed and tested in a laboratory under combined torsion, bending, and shear to validate the finite element model. Comparisons with the experimental data reveal that the program can accurately predict the behavior of L-beams under different reinforcement cases and combined loading ratios. The ANSYS model accurately predicted the loads and deformations for various types of reinforcements in L-beams and captured the concrete strains of these beams.

An Experimental Study on Flexural Behavior of Steel Fiber Reinforced Concrete Slab (강섬유보강 철근콘크리트 슬래브의 휨 거동에 관한 실험적 연구)

  • 박홍용;문정규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.861-866
    • /
    • 2000
  • This experimental were investigated on the influence of steel fiber reinforcement on flexural behavior characteristics of slabs with various steel fiber contents $V_f$ and aspect ratio($\ell $/$\phi$). Deflection, crack widths, and strains of steel bar were measured with every load step. In the results of this experimental, the addition of steel fibers to conventionally reinforced concrete slab increased the ultimate load, reduced the creak width, the average crack spacing, and deflection.

Shear Tests for Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) Beams with Shear Reinforcement

  • Lim, Woo-Young;Hong, Sung-Gul
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.177-188
    • /
    • 2016
  • One of the primary concerns about the design aspects is that how to deal with the shear reinforcement in the ultra-high performance fiber reinforced concrete (UHPFRC) beam. This study aims to investigate the shear behavior of UHPFRC rectangular cross sectional beams with fiber volume fraction of 1.5 % considering a spacing of shear reinforcement. Shear tests for simply supported UHPFRC beams were performed. Test results showed that the steel fibers substantially improved of the shear resistance of the UHPFRC beams. Also, shear reinforcement had a synergetic effect on enhancement of ductility. Even though the spacing of shear reinforcement exceeds the spacing limit recommended by current design codes (ACI 318-14), shear strength of UHPFRC beam was noticeably greater than current design codes. Therefore, the spacing limit of 0.75d can be allowed for UHPFRC beams.

Repair and Rehabilitation of Polymer-Steel Fibrous High Strength Concrete Beams (폴리머-강섬유를 혼입한 고강도 콘크리트 보의 보수·보강)

  • Kwak, Kae-Hwan;Kim, Won-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.135-143
    • /
    • 2002
  • This study is to investigate its use by applying stainless steel wire mash reinforcement method of construction, which is newly developed, on the high strength concrete beam mixed with polymer-steel fiber. In this test, it is investigated and observed such as follows: the ultimate load, the initial flexure crack load, the initial diagonal tension crack load, the relation between load and deflection, load-strain relation, and also crack growth and fracture aspect by increasing load. The results of this test are; first, the stainless steel wire showed some useful reinforcement effects in multiplying the steel's resisting force of moment to the tensile force of beam or slab: second, the promoting strength and internal force was made in the process of the integration at the same reaction by using the penetrating polymer-mortar with an excellent durability and physical property. On the basis of this results, because such instances in applying stainless steel wire Mash reinforcement method of construction have been few so far, through the experimental investigation such as this test over and over again, the efficient and useful method must be developed for the practice.

Experimental analysis and modeling of steel fiber reinforced SCC using central composite design

  • Kandasamy, S.;Akila, P.
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.215-229
    • /
    • 2015
  • The emerging technology of self compacting concrete, fiber reinforcement together reduces vibration and substitute conventional reinforcement which help in improving the economic efficiency of the construction. The objective of this work is to find the regression model to determine the response surface of mix proportioning Steel Fiber Reinforced Self Compacting Concrete (SFSCC) using statistical investigation. A total of 30 mixtures were designed and analyzed based on Design of Experiment (DOE). The fresh properties of SCC and mechanical properties of concrete were studied using Response Surface Methodology (RSM). The results were analyzed by limited proportion of fly ash, fiber, volume combination ratio of two steel fibers with aspect ratio of 50/35: 60/30 and super plasticizer (SP) dosage. The center composite designs (CCD) have selected to produce the response in quadratic equation. The model responses included in the primary stage were flowing ability, filling ability, passing ability and segregation index whereas in harden stage of concrete, compressive strength, split tensile strength and flexural strength at 28 days were tested. In this paper, the regression model and the response surface plots have been discussed, and optimal results were found for all the responses.

Shear Strength of Prestressed Steel Fiber Concrete I-Beams

  • Tadepalli, Padmanabha Rao;Dhonde, Hemant B.;Mo, Y.L.;Hsu, Thomas T.C.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.267-281
    • /
    • 2015
  • Six full-scale prestressed concrete (PC) I-beams with steel fibers were tested to failure in this work. Beams were cast without any traditional transverse steel reinforcement. The main objective of the study was to determine the effects of two variables-the shear-span-to-depth ratio and steel fiber dosage, on the web-shear and flexural-shear modes of beam failure. The beams were subjected to concentrated vertical loads up to their maximum shear or moment capacity using four hydraulic actuators in load and displacement control mode. During the load tests, vertical deflections and displacements at several critical points on the web in the end zone of the beams were measured. From the load tests, it was observed that the shear capacities of the beams increased significantly due to the addition of steel fibers in concrete. Complete replacement of traditional shear reinforcement with steel fibers also increased the ductility and energy dissipation capacity of the PC I-beams.

Anlaysis on the Shear Failure of Fiber Mixed Soil (섬유혼합토의 전단파괴 해석)

  • 박영곤;장병욱
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.562-568
    • /
    • 1999
  • The model using homogenization technique based on energy concept for the prediction of the failure criterion of staple fiber mixed soil was developed to increase the practice and the application of staple fiber as a reinforcement for improving soft ground and agrictural structures. Parameters of the model are aspect ration and volumetric ocntnet of fiber, cohesion and internal friction angle of soil, adhesiion intercept of soil and fiber. It is judged that the model developed in this study is applicable to the soil composed of clay, silt and sand mixed by linear types of fiber such as steel bar, steel fiber , natural fiber etc..

  • PDF