• Title/Summary/Keyword: steel connections

Search Result 853, Processing Time 0.022 seconds

A Study on the Joint Element Connection of Joint Element Structure Method (JES 공법의 JOINT ELEMENT 이음부에 관한 연구)

  • 엄기영;박명준
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.3
    • /
    • pp.133-141
    • /
    • 2002
  • Recently developed JES(Joint Element Structure) Method was researched as a more safe and economic method than other under pass construction method and was applied to many construction sites. The joint element connection of JES Method is the most important factor for the to behavior of structure. The connection of JES method is filled with the mortar, and the steel and mortar of connections produce the same behavior as one material. The results of experience and numerical analysis are following: The maximum internal stress of connection is decided by the end of connection. also, The connection of joint element structure method have sufficient internal stress against fatigue.

New stability equation for columns in unbraced frames

  • Essa, Hesham S.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.411-425
    • /
    • 1998
  • The effective length factor of a framed column may be determined by means of the alignment chart procedure. This method is based on many unrealistic assumptions, among which is that all columns have the same stiffness parameter, which is dependent on the length, axial load, and moment of inertia of the column. A new approximate method is developed for the determination of effective length factors for columns in unbraced frames. This method takes into account the effects of inelastic column behaviour, far end conditions of the restraining beams and columns, semi-rigid beam-to-column connections, and differentiated stiffness parameters of columns. This method may be implemented on a microcomputer. A numerical study was carried out to demonstrate the extent to which the involved parameters affect the K factor. The beam-to-column connection stiffness, the stiffness parameter of columns, and the far end conditions of restraining members have a significant effect on the K factor of the column under investigation. The developed method is recommended for design purposes.

Advanced approach to design of small wind turbine support structures

  • Ismar, Imamovic;Suljo, LJukovac;Adnan, Ibrahimbegovic
    • Coupled systems mechanics
    • /
    • v.11 no.6
    • /
    • pp.525-542
    • /
    • 2022
  • In this work we present an advanced approach to the design of small wind turbine support steel structures. To this end we use an improved version of previously developed geometrically exact beam models. Namely, three different geometrically exact beam models are used, the first two are the Reissner and the Kirchhoff beam models implementing bi-linear hardening response and the third is the Reissner beam capable of also representing connections response. All models were validated in our previous research for a static response, and in this work they are extended to dynamic response. With these advanced models, we can perform analysis of four practical solutions for the installation of small wind turbines in new or existing buildings including effects of elastoplastic response to vibration problems. The numerical simulations confirm the robustness of numerical models in analyzing vibration problems and the crucial effects of elastoplastic response in avoiding resonance phenomena.

Stud connection in composite structures: development with concrete age

  • Chengqian Wen;Guotao Yang
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.729-741
    • /
    • 2023
  • As the most popular shear connection in composite structures, mature concrete has been widely investigated by considering mechanical properties of stud connectors (SCs) embedded. To further enhance the fabrication efficiency of composite structures and solve the contradiction between construction progress and structural performance, it is required to analyze the shear performance of stud connections of composite structures with different concrete ages. 18 typical vertical push-out tests were carried out on stud shear connectors at concrete ages of 7 days, 14 days, and 28 days. Also, the effects of concrete age, stud spacing and stud diameter on the shear capacity, connection stiffness and failure mode of the connectors were studied. A new relationship expression of load-slip for SCs with various concrete ages was proposed. The existing design code for the SCs shear strength was evaluated according to the experimental data, and a more practical prediction equation for the shear capacity of SCs with different concrete ages was established. A great agreement was observed between the experimental and theoretical results, which can provide a reference for engineering practices.

Numerical evaluating for the rigid and semi-rigid connection of I-Shaped beams to tubular columns

  • Shohreh Sohaei;Mehrzad TahamouliRoudsari;Parham Memarzadeh
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.305-323
    • /
    • 2024
  • Previous experimental studies have effectively demonstrated the remarkable efficiency of the stiffened channel link in connecting circular columns and I-shaped beams. This research aims to present design criteria and assess the seismic properties of this specific connection type through numerical modeling. Various parameters, including stiffener type and geometric properties of the stiffened channel element, were duly taken into account. The findings from over 136 nonlinear finite element analyses (FEAs) reveal that the recommended detailing scheme reliably satisfies all the regulations specified for rigid beam-to-column connections in special moment frames.

Experimentally investigation of replaceable reduced beam section utilizing beam splice connection

  • Yasin Onuralp Ozkilic;Mehmet Bakir Bozkurt
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.109-119
    • /
    • 2024
  • This study presents a replaceable reduced beam section (R-RBS) located at the column end in moment resisting frames (MRFs). An end of the R-RBS is connected to column by using end-plate moment connection and the other end of that is connected to main beam with beam splice connection. Therefore, the RBS that is expected to yield under an earthquake can be easily replaceable. Geometry of the RBS and the thickness of the beam splice connection are the prime variables of this study. A total of eight experimental test was carried out to examine the seismic performance of the proposed R-RBS with the connection details. The results obtained from experimental studies demonstrated that plate sizes of the beam splice connection significantly affect the seismic performance of RBSs used in MRFs.

Study on the Cyclic Seismic Testing of U-shape Hybrid Composite Beam-to-Composite Column Connections (신형상 U형 하이브리드 합성보와 기둥 접합부의 내진성능에 관한 연구)

  • Kim, Sung Bae;Kim, Sang Seup;Ryu, Deog Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.47-59
    • /
    • 2013
  • This study that is a successive secondary study right after the primary bending strength test of a new form of U-shape hybrid composite beam is a cyclic seismic test of U-shape hybrid composite beam and column conncetion. Three specimens are built for the variables which are kinds of columns, depth of beam, continuity or discontinuity of upper plate of beam, and a number of steel bars of end-beam. Kinds of columns are a reinforcement concrete column and a ACT column of CFT shape, and beam depth are 300, and 500 mm. Detail of connection is bolt connection with using a short bracket that is commonly use. As the result, deformability of 2~4% is ensured the floor displacement angle. If it is the negative moment, the maximum moment shows that its capacity is above the nominal moment.

Design Formula for the Flexural Strength of a Double Split Tee Connection (상·하부 스플릿 T 접합부의 휨강도 설계식)

  • Yang, Jae-Gue;Kim, Joo-Wo;Kim, Yu
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.511-520
    • /
    • 2012
  • The double split Tee connection, a type of full strength-partially restrained connection, has adequate flexural strength according to the changes in the thickness of the T-stub flange and the gauge distance of the high-strength bolts. Moreover, the double split Tee connection is designed and constructed with seismic connections that have enough ductility capacity applicable to ordinary moment frame and special moment frame by grade of steel, size of beam and column and geometric connection shape. However, such a domestic research and a proposal of a suitable design formula about the double split Tee connection are insufficient. Thus, many experimental and analytical studies are in need for the domestic application of the double split Tee connection. Therefore, this study aimed to examine and suggest feasibility of a design formula of the double split Tee connection of FEMA.

Analytical Investigation for Improved Design Models of Chevron Braced Frames (역V형 가새 골조의 개선된 디자인 모델을 위한 해석적 연구)

  • Yoo, Jung-Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.73-78
    • /
    • 2009
  • Steel Braced frames are a commonly-used seismic resisting system, and chevron steel braced frames are a frequently used type of steel braced frame. Recent research has indicated that the seismic performance of braced frames can be improved by designing the braced frame gusset plate connections in a manner that direct reflects seismic deformation demands, and by permitting yielding in the gusset plate at select performance levels. A parametric study using Finite Element (FE) models was conducted to examine the influence of the gusset plate and framing elements on the seismic performance of chevron braced frames, and to calibrate and develop improved design models. The impact of the frame details, including frame sizes, clearance requirements, gusset plate thickness and tapered plate, was explored. The results suggested that proper detailing of the connection can result in a significant improvement in the frame performance. The results also show that the gusset plate thickness has a significant impact on frame performance.

The Structural Economical Efficiency Evaluation of Partially Restrained Composite CFT Column-to-Beam Connection (합성반강접 CFT기둥-보 접합부 구조의 경제성 평가)

  • Kim, Sun-Hee;Bang, Jung-Seok;Park, Young-Wook;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.109-117
    • /
    • 2012
  • This study seeks to devise a design application for a beam structure with partially restrained composite connection to a CFT column. A cost-efficient and stable component is applied by adjusting the stiffness ratio of the column connection through partially restrained composite connection. Based on a review of the structure's stability, it was confirmed that in the case of a low-rise building as a moment frame, resistance without bracing is feasible because stiffness increased by virtue of the partial restrained composite connection by composite action. In the case of a high-rise building, lateral resistance load of moment frame was approximately 10% when proper partial restrained rate was at around 60%. With considerations related to economic efficiency, the partial restriction effect of the beam component was significantly activated by the uniform load, but that of the beam activated by concentrated load was not significantly indicative. The analysis indicated that 60% partial restrained girder at the connection was the most economical in the case of uniform load. It also showed that end moments can be reduced by approximately 25%.