• Title/Summary/Keyword: steam-electric power plants

Search Result 67, Processing Time 0.036 seconds

Design of a Partial Inter-tube Lancing System actuated by hydraulic power for type F model Steam Generator in Nuclear Power Plant (수압구동 전열관다발 부분 삽입형 증기발생기 세정장비 설계)

  • Kim, S.T.;Jeong, T.W.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1132-1135
    • /
    • 2008
  • The sludge grown up in steam generators of nuclear power plants shortens the life-cycle of steam generators and reduces the output of power plants. So KHNP(Korea Hydro and Nuclear Power), the only nuclear power utility in Korea, removes it periodically using a steam generator lancing system during the outage of plants for an overhaul. KEPRI(Korea Electric Power Research Institute) has developed lancing systems with high pressured water nozzle for steam generators of nuclear power plants since 2001. In this paper, the design of a partial inter-tube lancing system for model F type steam generators will be described. The system is actuated without a DC motor inner steam generators because the motors in a steam generator make a trouble from high intensity of radioactivity as a break down.

  • PDF

Study on the Microstructural Degradation of the Boiler Tubes for Coal-Fired Power Plants

  • Yoo, Keun-Bong;He, Yinsheng;Lee, Han-Sang;Bae, Si-Yeon;Kim, Doo-Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 2018
  • A boiler system transforms water to pressured supercritical steam which drives the running of the turbine to rotate in the generator to produce electricity in power plants. Materials for building the tube system face challenges from high temperature creep damage, thermal fatigue/expansion, fireside and steam corrosion, etc. A database on the creep resistance strength and steam oxidation of the materials is important to the long-term reliable operation of the boiler system. Generally, the ferritic steels, i.e., grade 1, grade 2, grade 9, and X20, are extensively used as the superheater (SH) and reheater (RH) in supercritical (SC) and ultra supercritcal (USC) power plants. Currently, advanced austenitic steel, such as TP347H (FG), Super304H and HR3C, are beginning to replace the traditional ferritic steels as they allow an increase in steam temperature to meet the demands for increased plant efficiency. The purpose of this paper is to provide the state-of-the-art knowledge on boiler tube materials, including the strengthening, metallurgy, property/microstructural degradation, oxidation, and oxidation property improvement and then describe the modern microstructural characterization methods to assess and control the properties of these alloys. The paper covers the limited experience and experiment results with the alloys and presents important information on microstructural strengthening, degradation, and oxidation mechanisms.

Condenser cooling system & effluent disposal system for steam-electric power plants: Improved techniques

  • Sankar, D.;Balachandar, M.;Anbuvanan, T.;Rajagopal, S.;Thankarathi, T.;Deepa, N.
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.355-367
    • /
    • 2017
  • In India, the current operation of condenser cooling system & effluent disposal system in existing power plants aims to reduce drawal of seawater and to achieve Zero Liquid Discharge to meet the demands of statutory requirements, water scarcity and ecological system. Particularly in the Steam-Electric power plants, condenser cooling system adopts Once through cooling (OTC) system which requires more drawal of seawater and effluent disposal system adopts sea outfall system which discharges hot water into sea. This paper presents an overview of closed-loop technology for condenser cooling system and to achieve Zero Liquid Discharge plant in Steam-Electric power plants making it lesser drawal of seawater and complete elimination of hot water discharges into sea. The closed-loop technology for condenser cooling system reduces the drawal of seawater by 92% and Zero Liquid Discharge plant eliminates the hot water discharges into sea by 100%. Further, the proposed modification generates revenue out of selling potable water and ZLD free flowing solids at INR 81,97,20,000 per annum (considering INR 60/Cu.m, 330 days/year and 90% availability) and INR 23,760 per annum (considering INR 100/Ton, 330 days/year and 90% availability) respectively. This proposed modification costs INR 870,00,00,000 with payback period of less than 11 years. The conventional technology can be replaced with this proposed technique in the existing and upcoming power plants.

A Study on the Relationship between Steam Generator Fouling and the Electric Power (증기발생기 파울링과 전기출력의 상관성 고찰)

  • Cho, Nam Cheoul;Shin, Dong Man;Kim, Yong Sik
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.31-37
    • /
    • 2017
  • The heat transfer function or thermal performance is the most important function of the steam generator component in nuclear power plants. The declining of thermal performance, fouling does not affect the electric power of the nuclear power plant within a certain fouling level, but it affects the output when goes beyond the governor valve wide open of the turbine. The VWO steam pressure can be predicted through the thermal performance evaluation of steam generators in the nuclear power plant. In consideration of the fouling characteristics of the steam generator, methods of the thermal performance evaluation and fouling cases are reviewed, and also the critical VWO value is estimated through the actual thermal performance evaluation. It is necessary to apply the VWO theory based on the thermal performance of the steam generators.

DEVELOPMENT OF A STEAM GENERATOR LANCING SYSTEM

  • Jeong Woo-Tae;Kim Seok-Tae;Hong Sung-Yull
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.391-398
    • /
    • 2006
  • It is recommended to clean steam generators of nuclear power plants during plant outages. Under normal operations, sludge is created and constantly accumulates in the steam generators. The constituents of this sludge are different depending on each power plant characteristics. The sludge of the Kori Unit 1 steam generator, far example, was found to be composed of 93% ferrous oxide, 3% carbon and 1% of silica oxide and nickel oxide each. The research to develop a lancing system that would remove sludge deposits from the tubesheet of a steam generator was started in 1998 by the Korea Electric Power Research Institute (KEPRI) of the Korea Electric Power Corporation (KEPCO). The first commercial domestic lancing system in Korea, the $KALANS^(R)-I$ Lancing System, was completed in 2000 for Kori Unit 1 for cleaning the tubesheet of its Westinghouse Delta-60 steam generator. Thereafter, the success of the development and site implementation of the $KALANS^(R)-I$ lancing system for YGN Units 1&2 and Ulchin Units 3&4 was also realized in 2004 for sludge removal at those sites. The upper bundle cleaning system for Westinghouse model F steam generators is now under development.

Numerical Analysis of Turbulent Combustion and Emissions in an HRSG System (가스터빈 열 회수 증기 발생기의 난류연소 해석과 배기가스 예측 및 검증)

  • Jang, Jihoon;Han, Karam;Park, Hoyoung;Lee, Wook-Ryun;Huh, Kangyul
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.103-111
    • /
    • 2019
  • The combined cycle plant is an integration of gas turbine and steam turbine, combining the advantages of both cycles. It recovers the heat energy from gas turbine exhaust to use it to generate steam. The heat recovery steam generator plays a crucial role in combined cycle plants, providing the link between the gas turbine and the steam turbine. Simulation of the performance of the HRSG is required to study its effect on the entire cycle and system. Computational fluid dynamics has potential to become a useful to validate the performance of the HRSG. In this study a solver has been implemented in the open source code, OpenFOAM, for combustion simulation in the heat recovery steam generator. The solver is based on the steady laminar flamelet model to simulate detailed chemical reaction mechanism. Thereafter, the solver is used for simulation of HRSG system. Three cases with varying fuel injections and gas turbine exhaust gas flow rates were simulated and the results were compared with measurements at the system outlet. Predicted temperature and emissions and those from measurements showed the same trend and in quantitative agreement.

An Introduction to Test Methods about Steam Valves of Steam Turbines in Power Plants (발전소 운전 중 증기터빈 밸브 시험 방식 소개)

  • Choi, In-Kyu;Woo, Joo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1601-1602
    • /
    • 2007
  • Steam stop valves of steam turbine in the power plant are at their 100% position and have no movements. Steam control valves, ie governor valves have no movements either at their controlling position on load limit operation. By the way, if there were no change of operation state, steam valves could be sticked mechanically. Because the governor could fail in protecting and controlling steam turbine in case of emergency conditions, the closing test of 100% valve travel must be accomplished periodically for the purpose of testimony of their good conditions. And, As the difference between steam turbine structures exists according to the manufacturer or generation capacity, both steam stop valves and steam control valves differes in structure and operation method. Therefore, it is essential for not only turbine protection but also control for the control engineers to find out composition of steam valves and method of closing test.

  • PDF

Development of Performance Demonstration Programs for Eddy Current Data Analysis

  • Cho, Chan-Hee;Nam, Min-Woo;Yang, Seung-Han;Yang, Dong-Soon;Lee, Hee-Jong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.228-232
    • /
    • 2005
  • The Korea Electric Power Research Institute (KEPRI) has developed performance demonstration programs for non-destructive testing personnel who analyze ECT(eddy current testing) data for steam generator tubing since 2001 The purpose of these performance demonstration programs is to ensure a uniform knowledge and skill level of data analysts and contribute to safe operation of nuclear power plants. Many changes have occurred in non-destructive testing of steam generator tubing such as inspection scope, plugging criteria and qualification requirements. According to the Notice 2004-13 revised by the Ministry of Science and Technology (MOST), the analyst for steam generator tubing shall be qualified as the qualified data analyst (QDA), and the site specific performance demonstration (SSPD) program shall be implemented. KEPRI developed these performance demonstration programs and they are being successfully implemented. The analyst's performance is expected to be improved by the implementation of these programs.

A Study on Turbine Control and Turbine Bypass Control during Startup of Thermal Power Plants (화력발전소 기동시 터빈 바이패스 시스템과 터빈 제어에 관한 고찰)

  • Choi, In-Kyu;Park, Doo-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1664_1665
    • /
    • 2009
  • Many years ago, most of thermal power plants built in this country were of subcritical pressure, of medium or small size, of constant pressure operations and of drum type steam generators with circulation type boilers. But, nowadays almost all of them were of high efficiency, of supercritical pressure, of big capacity, of sliding pressure operations, and of once through type steam generator. It has such advantage as the reduction of startup duration, but it control system and operation method are very complicated. It has a big difference in operation method of turbine and boiler. The feedforward control needs to be introduced to prevent such problems as thermal shock during the transit from normal operation into bypass operation. This paper introduces the turbine control and turbine bypass control during startup of thermal power plants.

  • PDF

A Development of Digital Control System for FWPT In Nuclear Power Plant (원전 급수펌프 구동용 터빈 제어시스템 개발)

  • Choi, In-Kyu;Jeong, Chang-Ki;Kim, Byoung-Chul;Kim, Jong-An;Woo, Joo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1885-1886
    • /
    • 2006
  • The thermal energy from nuclear fission is transferred to the steam generator which is a kind of a large heat exchanger. After the feedwater is injected into the steam generator and absorbs the thermal energy, it is converted into the steam. This steam goes into the turbine. The balance between the generated energy and the consumed energy is required for the nuclear power plant to be stable. For the purpose of which, the feed water, a parameter for energy transfer, should be controlled in stability. Usually, the nuclear power plants are operated in base load in the view of power system for the stability of fission system. Therefore, though there will be almost no unbalance, there can be some instability from unbalance in case of startup/shutdown or disturbance. In this case, the controllability of feedwater pump is very important for the quick recover of stability.

  • PDF