• Title/Summary/Keyword: steam addition

Search Result 385, Processing Time 0.033 seconds

A Study on the Control of Spring Back for the Precision Forming of the Steam Generator Helical Tube (나선형 증기 발생기 튜브의 정밀성형을 위한 스프링백 제어 연구)

  • 서영성;김용완;김종인
    • Transactions of Materials Processing
    • /
    • v.11 no.3
    • /
    • pp.238-245
    • /
    • 2002
  • The spring back taking place after the coiling process of steam generator tube leads to the dimensional inaccuracy. In order to reduce the spring back, tension force was applied to the one end of the tube during forming. In this work, parametric study using FEM was performed to find the appropriate magnitude of tension force. The force that induces minimum spring back was found by simultaneously taking account if spring back amount, cross-sectional ovality, and thickness of the tube wall after deformation. In addition, stress relieving by heat treatment was also simulated as an alternative to the former method. The latter was found to be more effective under the given constraints.

Influence on heat transfer due to uneven flow (유동 불균일이 전열관 튜브에 미치는 영향)

  • Chong, Chae-Hon;Song, Jung-Il
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.273-279
    • /
    • 2008
  • The purpose of this study is not only to evaluate thermal performance but also to find the stress behavior of heat transfer tubes under the part load operation in Heat Recovery Steam Generator. Flow analysis was performed to know the behavior of exhaust gas from gas turbine and thermal performance was calculated using distribution of hot exhaust velocity. In addition, tubes temperature during operation were gathered from actual plant to verify the uneven flow distribution under part load operation. Stress analysis was performed using tubes temperature data gathered from actual plant under both part and full load operations to know the stress behavior of tubes.

  • PDF

Influence of Chemical Admixtures on Flyahe Paste and Concrete (플라이애쉬 페이스트 및 콘크리트에 화학혼화제가 미치는 영향)

  • 이진용;최수홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.77-82
    • /
    • 1998
  • It was investigated to evaluate the characteristics of cement-flyash paste affected the replacement level, curing method and chemical admixtures. The strength of cement-flyash paste was lower than that of cement paste only and the differences increased with increasing the replacement level. However, in steam curing, the strength of cement-flyash pastes was improved and specially, the early strength was effectively increased. In order to improve the early strength, the use of $Na_2SO_4$ in cement-flyash paste increased the quality of concrete. In addition, the strength of concrete including 30% of fly ash has improved and obtained the highest strength compared to other concrete mix.

  • PDF

Detection and Diagnosis of Sensor Faults for Unknown Sensor Bias in PWR Steam Generator

  • Kim, Bong-Seok;Kang, Sook-In;Lee, Yoon-Joon;Kim, Kyung-Youn;Lee, In-Soo;Kim, Jung-Taek;Lee, Jung-Woon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.86.5-86
    • /
    • 2002
  • The measurement sensor may contain unknown bias in addition to the white noise in the measurement sequence. In this paper, fault detection and diagnosis scheme for the measurement sensor is developed based on the adaptive estimator. The proposed scheme consists of a parallel bank of Kalman-type filters each matched to a set of different possible biases, a mode probability evaluator, an estimate combiner at the outputs of the filters, a bias estimator, and a fault detection and diagnosis logic. Monte Carlo simulations for the PWR steam generator in the nuclear power plant are provided to illustrate the effectiveness of the proposed scheme.

  • PDF

A Preliminary Study for the Implementation of General Accident Management Strategies

  • Yang, Soo-Hyung;Kim, Soo-Hyung;Jeong, Young-Hoon;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.695-700
    • /
    • 1997
  • To enhance the safety of nuclear power plants, implementation of accident management has been suggested as one of most important programs. Specially, accident management strategies are suggested as one of key elements considered in development of the accident management program. In this study, generally applicable accident management strategies to domestic nuclear power plants are identified through reviewing several accident management programs for the other countries and considering domestic conditions. Identified strategies are as follows; 1) Injection into the Reactor Coolant System, 2) Depressurize the Reactor Coolant System, 3) Depressurize the Steam Generator, 4) Injection into the Steam Generator, 5) Injection into the Containment, 6) Spray into the Containment, 7) Control Hydrogen in the Containment. In addition, the systems and instrumentation necessary for the implementation of .each strategy are also investigated.

  • PDF

Effects of Deaerator in Feedwater System on Steam Generator in Nuclear Power Plant (원자력 발전소 급수계통 탈기기가 증기발생기에 미치는 영향)

  • Choi, Young-Boo;Kim, Si-Moon;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.403-405
    • /
    • 1999
  • Dissoved oxygen(DO) control by deaerator has a great effect on the integrity of S/G in nuclear power plant. The goal of this study based on the theoretical basis and the extensive surveys is to identify the effect of deaerator in feedwater system on steam generator to clear the need of installation of deaerator. In addition, this paper discusses the review to understand the mechanism of DO formation as well as removal. The conclusion is that the installation of deaerator improve the integrity of S/G and is contributed to the whole nuclear power plant safety.

  • PDF

A Study on Numerical Analysis for Heat Transfer and Flow Characteristics in a Ribbed Tube (열교환기 내 리브드 튜브의 열전달 및 유체유동에 관한 수치 해석적 연구)

  • Jeon, Jeong-Do;Jeon, Eon-Chan;Jeung, Hui-Gyun;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.134-139
    • /
    • 2011
  • This study was conducted on the characteristics of fluid flow and heat transfer in the ribbed tube used for a steam power plant. It was assumed that the air is incompressible and therefore, its density is not variable according to temperature. In addition, the gravity was ignored. A commercial code of computational fluid dynamics was used and standard k-$\epsilon$ model was used together with the energy equation included to calculate heat transfer. As Reynolds No. was low at the velocity distribution in the axial direction, the air reached hydro-dynamically fully developed region shortly but high Reynolds No. yielded late full hydro-dynamic development. The velocity distribution and non-dimensional temperature distribution were all physically reasonable and thus had a good agreement with the experimental result.

SCC Inhibitors for SG Tube Materials in Nuclear Power Plants

  • Kim, Kyung-Mo;Lee, Eun-Hee;Kim, Uh-Chul
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.585-586
    • /
    • 2006
  • Several chemicals were studied to suppress the damage due to stress corrosion cracking (SCC) of steam generator (SG) tubes in nuclear power plants. The effects on the SCC of the compounds, $TiO_2$, TyzorLA and $CeB_6$, were tested for several types of SG tubing materials. The test with the addition of $TiO_2$ and $CeB_6$ showed an effect in decreasing the SCC for the SG tubing material. However, $CeB_6$ caused some more SCC for Alloy 800. The penetration property into a crevice of the inhibitors was investigated by using Alloy 600 specimens with different gap.

  • PDF

ESTABLISHMENT OF A SEVERE ACCIDENT MITIGATION STRATEGY FOR AN SBO AT WOLSONG UNIT 1 NUCLEAR POWER PLANT

  • Kim, Sungmin;Kim, Dongha
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.459-468
    • /
    • 2013
  • During a station blackout (SBO), the initiating event is a loss of Class IV and Class III power, causing the loss of the pumps, used in systems such as the primary heat transporting system (PHTS), moderator cooling, shield cooling, steam generator feed water, and re-circulating cooling water. The reference case of the SBO case does not credit any of these active heat sinks, but only relies on the passive heat sinks, particularly the initial water inventories of the PHTS, moderator, steam generator secondary side, end shields, and reactor vault. The reference analysis is followed by a series of sensitivity cases assuming certain system availabilities, in order to assess their mitigating effects. This paper also establishes the strategies to mitigate SBO accidents. Current studies and strategies use the computer code of the Integrated Severe Accident Analysis Code (ISAAC) for Wolsong plants. The analysis results demonstrate that appropriate strategies to mitigate SBO accidents are established and, in addition, the symptoms of the SBO processes are understood.

Failure Analysis on High Pressure Steam Piping of 500 MW Thermal Power Plant (500 MW 화력발전소 고압 증기 배관 손상 원인 분석)

  • Kim, Jeongmyun;Jeong, Namgeun;Yang, Kyeonghyun;Park, Mingyu;Lee, Jaehong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.323-330
    • /
    • 2019
  • The 500 MW Korean standard coal-fired power plant is the largest standardized power plant in Korea and has played a pivotal role in domestic power generation for over 20 years. In addition to the aging degradation due to long term operation, the probability of failure of power generation facilities is increasing due to frequent startup and stop caused by the lower utilization rate due to air pollution problem caused by coal-fired power plants. Among them, steam piping plays an important role in transferring high-temperature & pressure steam produced in a boiler to turbine for power generation. In recent years, failure of steam piping of large coal-fired power plant has frequently occurred. Therefore, in this study, failure analysis of high pressure piping weld was conducted. We identify the damage caused by high stress due to abnormal supporting structure of the piping and suggest improved supporting structure to eliminate high stress through microstructure analysis and piping stress analysis to prevent the occurrence of the similar failure of other power plant in the case of repetitive damage to the main steam piping system of the 500 MW Korean standard coal-fired power plant.