• Title/Summary/Keyword: statistical signal processing

Search Result 155, Processing Time 0.024 seconds

Detection of Main Spindle Bearing Conditions in Machine Tool via Neural Network Methodolog (신경회로망을 이용한 공작기계 주축용 베어링의 고장검지)

  • Oh, S.Y.;Chung, E.S.;Lim, Y.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.33-39
    • /
    • 1995
  • This paper presents a method of detecting localized defects on tapered roller bearing in main spindle of machine tool system. The statistical parameters in time-domain processing technique have been calculated to extract useful features from bearing vibration signals. These features are used by the input feature of an artificial neural network to detect and diagnose bearing defects. As a results, the detection of bearing defect conditions could be successfully performed by using an artificial neural network with statistical parameters of acceleration signals.

  • PDF

Noise Reduction for Photon Counting Imaging Using Discrete Wavelet Transform

  • Lee, Jaehoon;Kurosaki, Masayuki;Cho, Myungjin;Lee, Min-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.276-283
    • /
    • 2021
  • In this paper, we propose an effective noise reduction method for photon counting imaging using a discrete wavelet transform. Conventional 2D photon counting imaging was used to visualize the object under dark conditions using statistical methods, such as the Poisson random process. The photons in the scene were estimated using a statistical method. However, photons which disturb the visualization and decrease the image quality may occur in the background where there is no object. Although median filters are used to reduce the noise, the noise in the scene remains. To remove the noise effectively, our proposed method uses the discrete wavelet transform, which removes the noise in the scene using a specific thresholding method that utilizes photon counting imaging characteristics. We conducted an optical experiment to demonstrate the denoising performance of the proposed method.

A Study on Reconstruction of Degraded Signal using Wavelet Transform (웨이브렛 변환을 이용한 훼손된 신호의 복원에 관한 연구)

  • Kim Nam-Ho;Bae Sang-Bum;Ryu Ji-Goo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • Degradation is generated by several causes in the process of digitalization or transmission of data. And its essential cause is noise. Therefore, researches for wavelet-based methods which reconstruct signal degraded by noise have continued. In AWGN(addtive white gaussian noise) environment, the general trend for denoising is to use the thresholding method. Reconstructed signal includes a lot of noise because these methods only consider statistical characteristic regarding noise. In this paper, we present a new method which uses the cumulation of wavelet detail coefficients. As a result, reconstruction of edges and denoising performance are improved. Also we compare existing methods using SNR(signal-to-noise ratio) as the standard of judgement of improvemental effect.

  • PDF

The Magnitude Distribution method of U/V decision (음성신호의 전폭분포를 이용한 유/무성음 검출에 대한 연구)

  • 배성근
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.249-252
    • /
    • 1993
  • In speech signal processing, The accurate detection of the voiced/unvoiced is important for robust word recognition and analysis. This algorithm is based on the MD in the frame of speech signals that does not require statistical information about either signal or background-noise to decide a voiced/unvoiced. This paper presents a method of estimation the Characteristic of Magnitude Distribution from noisy speech and also of estimation the optimal threshold based on the MD of the voiced/unvoiced decision. The performances of this detectors is evaluated and compared to that obtained from classifying other paper.

  • PDF

A Study on response time measurement of FPD using statistical techniques of histogram

  • Lee, Yeun-Woo;Park, Gi-Chang;Lee, Sang-Dae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.506-510
    • /
    • 2005
  • As FPD technology is getting improved, there are a lot of issues on signal processing and analysis, and its relative importance has been increasing day by day. In particular, response time sad in the evaluation item of FPD has been measured by oscilloscope. In this paper, we propose an effective measurement method of response time in FPD. The proposed method is to calculate the rising/ falling time by using statistical techniques of histogram and analyzing an energy distribution. Ultimately, the method has proved the utility and reliability by comparison of oscilloscope

  • PDF

Intelligence Package Development for UT Signal Pattern Recognition and Application to Classification of Defects in Austenitic Stainless Steel Weld (UT 신호형상 인식을 위한 Intelligence Package 개발과 Austenitic Stainless Steel Welding부 결함 분류에 관한 적용 연구)

  • Lee, Kang-Yong;Kim, Joon-Seob
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.4
    • /
    • pp.531-539
    • /
    • 1996
  • The research for the classification of the artificial defects in welding parts is performed using the pattern recognition technology of ultrasonic signal. The signal pattern recognition package including the user defined function is developed to perform the digital signal processing, feature extraction, feature selection and classifier selection. The neural network classifier and the statistical classifiers such as the linear discriminant function classifier and the empirical Bayesian classifier are compared and discussed. The pattern recognition technique is applied to the classification of artificial defects such as notchs and a hole. If appropriately learned, the neural network classifier is concluded to be better than the statistical classifiers in the classification of the artificial defects.

  • PDF

Online abnormal events detection with online support vector machine (온라인 서포트벡터기계를 이용한 온라인 비정상 사건 탐지)

  • Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.2
    • /
    • pp.197-206
    • /
    • 2011
  • The ability to detect online abnormal events in signals is essential in many real-world signal processing applications. In order to detect abnormal events, previously known algorithms require an explicit signal statistical model, and interpret abnormal events as statistical model abrupt changes. In general, maximum likelihood and Bayesian estimation theory to estimate well as detection methods have been used. However, the above-mentioned methods for robust and tractable model, it is not easy to estimate. More freedom to estimate how the model is needed. In this paper, we investigate a machine learning, descriptor-based approach that does not require a explicit descriptors statistical model, based on support vector machines are known to be robust statistical models and a sequential optimal algorithm online support vector machine is introduced.

A Study of Tool Breakage Dection Using AE Sensor (AE(acoustic emission)센서를 이용한 공구파손검출에 관한 연구)

  • Lee, Jae-Jong;Song, Jun-Yeop;Park, Hwa-Yeong
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.61-68
    • /
    • 1989
  • As the system monitoring technology become required in order to improve the system performance and the productivity, we’ve studied to the detection for the tool wear and the tool breakage using AE sensors that is able to detection of generated high frequency stress pulse at cutting. The detection system is consist of a sensing part, a amplifier part, a signal processing part, and a analysis & output part. The moment (a rms and a kurtosis) of statistical method is used for analysis of AE singnal. The experiment are carried out in a CNC lathe. In this study, we achieved that the amplitude level of the AE signal and statistical moments was largely changed as the tool failure. The change rate of Kurtosis was especially large, but the change rate of the rms was small.

  • PDF

Neural Network-based Real-time End Point Detection Specialized for Accelerometer Signal (신경망을 이용한 실시간 가속도 신호 끝점 검출 방법)

  • Lim, Jong-Gwan;Kwon, Dong-Soo
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.178-185
    • /
    • 2009
  • A signal processing algorithm is proposed for end point detection which is used commonly in accelerometers-based pattern recognition problem. In the conventional method, end points are detected by manual manipulation with an additive button or algorithm based on statistical computation and highpass filtering to cause critical time delay and difficulty for parameters optimization. As an solution, we propose a focused Time Lagged Feedforward Network(TLFN) with respect to a differential signal of acceleration, which is widely applied for time series forecasting. The simple experiment is conducted with handwriting and the detection performance and response characteristic of the proposed algorithm is tested and analyzed.

  • PDF

Estimation of the Number of Sources Based on Hypothesis Testing

  • Xiao, Manlin;Wei, Ping;Tai, Heng-Ming
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.481-486
    • /
    • 2012
  • Accurate and efficient estimation of the number of sources is critical for providing the parameter of targets in problems of array signal processing and blind source separation among other such problems. When conventional estimators work in unfavorable scenarios, e.g., at low signal-to-noise ratio (SNR), with a small number of snapshots, or for sources with a different strength, it is challenging to maintain good performance. In this paper, the detection limit of the minimum description length (MDL) estimator and the signal strength required for reliable detection are first discussed. Though a comparison, we analyze the reason that performances of classical estimators deteriorate completely in unfavorable scenarios. After discussing the limiting distribution of eigenvalues of the sample covariance matrix, we propose a new approach for estimating the number of sources which is based on a sequential hypothesis test. The new estimator performs better in unfavorable scenarios and is consistent in the traditional asymptotic sense. Finally, numerical evaluations indicate that the proposed estimator performs well when compared with other traditional estimators at low SNR and in the finite sample size case, especially when weak signals are superimposed on the strong signals.