This study presents a random-aggregate mesoscale model integrating the random distribution of the coarse aggerates and the damage mechanics of the mortar and interfacial transition zone (ITZ). This mesoscale model can generate the random distribution of the coarse aggregates according to the prescribed particle size distribution which enables the automation of the current methodology with different coarse aggregates' distribution. The main innovation of this work is to propose the "correction factor" to eliminate the dimensionally dependent mesh sensitivity of the concrete damaged plasticity (CDP) model. After implementing the correction factor through the user-defined subroutine in the randomly meshed mesoscale model, the predicted fracture resistance is in good agreement with the average experimental results of a series of geometrically similar single-edge-notched beams (SENB) concrete specimens. The simulated cracking pattern is also more realistic than the conventional concrete material models. The proposed random-aggregate mesoscale model hence demonstrates its validity in the application of concrete fracture failure and statistical size effect analysis.
The study was conducted to analyze the genetic parameters of somatic cell score (SCS) of Holstein cows, which is an important indicator to udder health. Test-day records of somatic cell counts (SCC) of 305-day lactation design from first to fifth lactations were collected on Holsteins in Korea during 2000 to 2012. Records of animals within 18 to 42 months, 30 to 54 months, 42 to 66 months, 54 to 78 months, and 66 to 90 months of age at the first, second, third, fourth and fifth parities were analyzed, respectively. Somatic cell scores were calculated, and adjusted for lactation production stages by Wilmink's function. Lactation averages of SCS ($LSCS_1$ through $LSCS_5$) were derived by further adjustments of each test-day SCS for five age groups in particular lactations. Two datasets were prepared through restrictions on number of sires/herd and dams/herd, progenies/sire, and number of parities/cow to reduce data size and attain better relationships among animals. All LSCS traits were treated as individual trait and, analyzed through multiple-trait sire models and single trait animal models via VCE 6.0 software package. Herd-year was fitted as a random effect. Age at calving was regressed as a fixed covariate. The mean LSCS of five lactations were between 3.507 and 4.322 that corresponded to a SCC range between 71,000 and 125,000 cells/mL; with coefficient of variation from 28.2% to 29.9%. Heritability estimates from sire models were within the range of 0.10 to 0.16 for all LSCS. Heritability was the highest at lactation 2 from both datasets (0.14/0.16) and lowest at lactation 5 (0.11/0.10) using sire model. Heritabilities from single trait animal model analyses were slightly higher than sire models. Genetic correlations between LSCS traits were strong (0.62 to 0.99). Very strong associations (0.96 to 0.99) were present between successive records of later lactations. Phenotypic correlations were relatively weaker (<0.55). All correlations became weaker at distant lactations. The estimated breeding values (EBVs) of LSCS traits were somewhat similar over the years for a particular lactation, but increased with lactation number increment. The lowest EBV in first lactation indicated that selection for SCS (mastitis resistance) might be better with later lactation records. It is expected that results obtained from these multi-trait lactation model analyses, being the first large scale SCS data analysis in Korea, would create a good starting step for application of advanced statistical tools for future genomic studies focusing on selection for mastitis resistance in Holsteins of Korea.
In this study, the statistical characteristics of the resistance bias factors were analyzed using a high-quality field load test database, and the total resistance bias factors were estimated considering the soil uncertainty and construction errors for the application of the limit state design of aggregate pier foundation. The MLR model by Bong and Kim (2017), which has a higher prediction performance than the previous models was used for estimating the resistance bias factors, and its suitability was evaluated. The chi-square goodness of fit test was performed to estimate the probability distribution of the resistance bias factors, and the normal distribution was found to be most suitable. The total variability in the nominal resistance was estimated including the uncertainty of undrained shear strength and construction errors that can occur during the aggregate pier construction. Finally, the probability distribution of the total resistance bias factors is shown to follow a log-normal distribution. The parameters of the probability distribution according to the coefficient of variation of total resistance bias factors were estimated by Monte Carlo simulation, and their regression equations were proposed for simple application.
3D-QSAR studies for the fungicidal activities against resistance phytophthora blight (RPC; 95CC7303) and sensitive phytophthora blight (Phytopthora capsici) (SPC; 95CC7105) by a series of new 2-alkoxyphenyl-3-phenylthioisoindoline-1-one derivatives (A & B) were studieded using comparative molecular similarity indices analyses (CoMSIA) methodology. From the based on the results, the two CoMSIA models, R5 and S1: as the best models were derivated. The statistical results of the models showed the best predictability and fitness for the fungicidal activities based on the cross- validated value ($q^2=0.714{\sim}0.823$) and non cross-validated, value ($r^2_{ncv.}=0.918{\sim}0.954$), respectively. The model R5 for fungicidal activity of RPC generated from the field fit alignment and combination of electrostatic field, H-bond acceptor field and LUMO molecular orbital field. The model S1 (or S5) for fungicidal activity of SPC generated from the atom based fit alignment and combination of steric field and HOMO molecular orbital field. The models also shows that inclusion of H-bond acceptor field (A) improved the statistical significance of the models. From the based graphical analyses of CoMSIA contribution maps, it was revealed that the novel selective character for fungicidal activities between the two fungi by modify of X-sub-stituent on the N-phenyl group and R-substituent on the S-phenyl group will be able to achivement.
Two new predictive design methods are presented in this study. The first is a hybrid method, called neuro-fuzzy, based on neural networks with fuzzy learning. A total of 280 experimental datasets obtained from the literature concerning concentric punching shear tests of reinforced concrete slab-column connections without shear reinforcement were used to test the model (194 for experimentation and 86 for validation) and were endorsed by statistical validation criteria. The punching shear strength predicted by the neuro-fuzzy model was compared with those predicted by current models of punching shear, widely used in the design practice, such as ACI 318-08, SIA262 and CBA93. The neuro-fuzzy model showed high predictive accuracy of resistance to punching according to all of the relevant codes. A second, more user-friendly design method is presented based on a predictive linear regression model that supports all the geometric and material parameters involved in predicting punching shear. Despite its simplicity, this formulation showed accuracy equivalent to that of the neuro-fuzzy model.
Journal of Information Technology Applications and Management
/
v.26
no.1
/
pp.39-51
/
2019
As data grows rapidly, the provision of appropriate information needed by individuals has become an area of new services, and customized services which is enabling the analysis of optimal services through collecting, storing, and analyzing personal data are emerging in many fields. However, due to the characteristics of customized services based on various information collected by customers during the use of the service, the problem of privacy infringement is raised at the same time, and many studies are being actively conducted to solve this problem. This study seeks to explore how the customer's in-depth and customized services has an impact on their customers, which has not been derived from quantitative research using the grounded theory methodology. Through this, 84 concepts, 33 subcategories, 13 Categories and paradigm models were derived. In addition, 'Understanding and acceptance of online behavioral advertising (OBA)' was derived as a core category, and finally, acceptance types of OBA were classified into 'positive acceptance type', 'indifferent type', 'calculating type', and 'active resistance type' based on the key categories. This study divides the acceptance types of online behavioral advertising through the emotions and behaviors of the consumers throughout the procedure of online behavioral advertising experiences. In addition to the statistical and quantitative information currently used for providing behavioral advertising, it provides new criteria to reflect the refinement of behavioral advertising and personal tendencies or characteristics.
Kim, Yoo-Chul;Kim, Gun-Do;Kim, Myung-Soo;Hwang, Seung-Hyun;Kim, Kwang-Soo;Yeon, Sung-Mo;Lee, Young-Yeon
Journal of the Society of Naval Architects of Korea
/
v.58
no.4
/
pp.234-242
/
2021
In this study, we introduce the prediction of brake power for low-speed full ships and container carriers using the linear regression and a machine learning approach. The residual resistance coefficient, wake fraction coefficient, and thrust deduction factor are predicted by regression models using the main dimensions of ship and propeller. The brake power of a ship can be calculated by these coefficients according to the 1978 ITTC performance prediction method. The mean absolute error of the predicted power was under 7%. As a result of several validation cases, it was confirmed that the machine learning model showed slightly better results than linear regression.
Mohd Azrizal, Fauzi;Mohd Fadzil, Arshad;Noorsuhada Md, Nor;Ezliana, Ghazali
Computers and Concrete
/
v.30
no.6
/
pp.393-407
/
2022
Due to the enormous cement content, pozzolanic materials, and the use of different aggregates, sustainable controlled low-strength material (CLSM) has a higher material cost than conventional concrete and sustainable construction issues. However, by selecting appropriate materials and formulations, as well as cement and aggregate content, whitethorn costs can be reduced while having a positive environmental impact. This research explores the desire to optimize plastic properties and 28-day unconfined compressive strength (UCS) of CLSM containing powder content from unprocessed-fly ash (u-FA) and recycled fine aggregate (RFA). The mixtures' input parameters consist of water-to-cementitious material ratio (W/CM), fly ash-to-cementitious materials (FA/CM), and paste volume percentage (PV%), while flowability, bleeding, segregation index, and 28-day UCS were the desired responses. The central composite design (CCD) notion was used to produce twenty CLSM mixes and was experimentally validated using MATLAB by an Artificial Neural Network (ANN). Variance analysis (ANOVA) was used for the determination of statistical models. Results revealed that the plastic properties of CLSM improve with the FA/CM rise when the strength declines for 28 days-with an increase in FA/CM, the diameter of the flowability and bleeding decreased. Meanwhile, the u-FA's rise strengthens the CLSM's segregation resistance and raises its strength over 28 days. Using calcareous powder as a substitute for cement has a detrimental effect on bleeding, and 28-day UCS increases segregation resistance. The response surface method (RSM) can establish high correlations between responses and the constituent materials of sustainable CLSM, and the optimal values of variables can be measured to achieve the desired response properties.
This study focused on modeling the behavior of the compressive stress using the average strain and ultrasonic test results in concrete. Feed-forward backpropagation artificial neural network (ANN) models were used to compare four types of concrete mixtures with varying water cement ratio (WC), ordinary concrete (ORC) and concrete with short steel fiber-reinforcement (FRC). Sixteen (16) $150mm{\times}150mm{\times}150mm$ concrete cubes were used; each contained eighteen (18) data sets. Ultrasonic test with pitch-catch configuration was conducted at each loading state to record linear and nonlinear test response with multiple step loads. Statistical Spearman's rank correlation was used to reduce the input parameters. Different types of concrete produced similar top five input parameters that had high correlation to compressive stress: average strain (${\varepsilon}$), fundamental harmonic amplitude (A1), $2^{nd}$ harmonic amplitude (A2), $3^{rd}$ harmonic amplitude (A3), and peak to peak amplitude (PPA). Twenty-eight ANN models were trained, validated and tested. A model was chosen for each WC with the highest Pearson correlation coefficient (R) in testing, and the soundness of the behavior for the input parameters in relation to the compressive stress. The ANN model showed increasing WC produced delayed response to stress at initial stages, abruptly responding after 40%. This was due to the presence of more voids for high water cement ratio that activated Contact Acoustic Nonlinearity (CAN) at the latter stage of the loading path. FRC showed slow response to stress than ORC, indicating the resistance of short steel fiber that delayed stress increase against the loading path.
In the stability analysis of hillside slopes, the roots of vegetation have been considered to act as a soil reinforcement. In order to predict the amount of increase in soil shear resistance, produced by tensile strength of roots that intersect a potential slip surface in hillside slopes, new soil -root interaction models are proposed in this paper. For this purpose, firstly, laboratary teats and in-situ tests wert performed on soil-root systems, and experimental results were compared with a couple of soil-root interaction models which had been proposed by Gray, Waldron, and Wu etc. Based on this comparison, a new soil-root interaction model is proposed. Secondly, a probabilistic soil-root model is proposed based on statistical analysis considering random nature of root distribution, root characteristics, and soil-root interactions. Finally, to examine the effect of this root reinforcement system on stability of hillside slopes, a simple three-dimensional stability analysis was performed, and it was shown that root reinforcement had a significant stabilizing influence on shallow slips rather than deep slips in hillside slopes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.